Solve for A (complex solution)
\left\{\begin{matrix}A=\frac{BQ}{R}\text{, }&P\neq 0\text{ and }R\neq 0\text{ and }Q\neq 0\\A\in \mathrm{C}\text{, }&C=0\text{ and }R\neq 0\text{ and }P\neq 0\text{ and }Q\neq 0\end{matrix}\right.
Solve for B (complex solution)
\left\{\begin{matrix}B=\frac{AR}{Q}\text{, }&P\neq 0\text{ and }R\neq 0\text{ and }Q\neq 0\\B\in \mathrm{C}\text{, }&C=0\text{ and }R\neq 0\text{ and }P\neq 0\text{ and }Q\neq 0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{BQ}{R}\text{, }&P\neq 0\text{ and }R\neq 0\text{ and }Q\neq 0\\A\in \mathrm{R}\text{, }&C=0\text{ and }R\neq 0\text{ and }P\neq 0\text{ and }Q\neq 0\end{matrix}\right.
Solve for B
\left\{\begin{matrix}B=\frac{AR}{Q}\text{, }&P\neq 0\text{ and }R\neq 0\text{ and }Q\neq 0\\B\in \mathrm{R}\text{, }&C=0\text{ and }R\neq 0\text{ and }P\neq 0\text{ and }Q\neq 0\end{matrix}\right.
Share
Copied to clipboard
QBC=RCA
Multiply both sides of the equation by PQR, the least common multiple of PR,PQ.
RCA=QBC
Swap sides so that all variable terms are on the left hand side.
CRA=BCQ
The equation is in standard form.
\frac{CRA}{CR}=\frac{BCQ}{CR}
Divide both sides by RC.
A=\frac{BCQ}{CR}
Dividing by RC undoes the multiplication by RC.
A=\frac{BQ}{R}
Divide QBC by RC.
QBC=RCA
Multiply both sides of the equation by PQR, the least common multiple of PR,PQ.
BCQ=ACR
Reorder the terms.
CQB=ACR
The equation is in standard form.
\frac{CQB}{CQ}=\frac{ACR}{CQ}
Divide both sides by CQ.
B=\frac{ACR}{CQ}
Dividing by CQ undoes the multiplication by CQ.
B=\frac{AR}{Q}
Divide ACR by CQ.
QBC=RCA
Multiply both sides of the equation by PQR, the least common multiple of PR,PQ.
RCA=QBC
Swap sides so that all variable terms are on the left hand side.
CRA=BCQ
The equation is in standard form.
\frac{CRA}{CR}=\frac{BCQ}{CR}
Divide both sides by RC.
A=\frac{BCQ}{CR}
Dividing by RC undoes the multiplication by RC.
A=\frac{BQ}{R}
Divide QBC by RC.
QBC=RCA
Multiply both sides of the equation by PQR, the least common multiple of PR,PQ.
BCQ=ACR
Reorder the terms.
CQB=ACR
The equation is in standard form.
\frac{CQB}{CQ}=\frac{ACR}{CQ}
Divide both sides by CQ.
B=\frac{ACR}{CQ}
Dividing by CQ undoes the multiplication by CQ.
B=\frac{AR}{Q}
Divide ACR by CQ.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}