\frac { A } { 5 } \cdot ( ( \frac { 6 } { 10 } + \frac { 7 } { 10 } ) : \frac { 1 } { 2 } + ( \frac { 3 } { 4 } - \frac { 5 } { 8 } ) =
Evaluate
\frac{109A}{200}
Expand
\frac{109A}{200}
Share
Copied to clipboard
\frac{A}{5}\left(\frac{\frac{6+7}{10}}{\frac{1}{2}}+\frac{3}{4}-\frac{5}{8}\right)
Since \frac{6}{10} and \frac{7}{10} have the same denominator, add them by adding their numerators.
\frac{A}{5}\left(\frac{\frac{13}{10}}{\frac{1}{2}}+\frac{3}{4}-\frac{5}{8}\right)
Add 6 and 7 to get 13.
\frac{A}{5}\left(\frac{13}{10}\times 2+\frac{3}{4}-\frac{5}{8}\right)
Divide \frac{13}{10} by \frac{1}{2} by multiplying \frac{13}{10} by the reciprocal of \frac{1}{2}.
\frac{A}{5}\left(\frac{13\times 2}{10}+\frac{3}{4}-\frac{5}{8}\right)
Express \frac{13}{10}\times 2 as a single fraction.
\frac{A}{5}\left(\frac{26}{10}+\frac{3}{4}-\frac{5}{8}\right)
Multiply 13 and 2 to get 26.
\frac{A}{5}\left(\frac{13}{5}+\frac{3}{4}-\frac{5}{8}\right)
Reduce the fraction \frac{26}{10} to lowest terms by extracting and canceling out 2.
\frac{A}{5}\left(\frac{52}{20}+\frac{15}{20}-\frac{5}{8}\right)
Least common multiple of 5 and 4 is 20. Convert \frac{13}{5} and \frac{3}{4} to fractions with denominator 20.
\frac{A}{5}\left(\frac{52+15}{20}-\frac{5}{8}\right)
Since \frac{52}{20} and \frac{15}{20} have the same denominator, add them by adding their numerators.
\frac{A}{5}\left(\frac{67}{20}-\frac{5}{8}\right)
Add 52 and 15 to get 67.
\frac{A}{5}\left(\frac{134}{40}-\frac{25}{40}\right)
Least common multiple of 20 and 8 is 40. Convert \frac{67}{20} and \frac{5}{8} to fractions with denominator 40.
\frac{A}{5}\times \frac{134-25}{40}
Since \frac{134}{40} and \frac{25}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{A}{5}\times \frac{109}{40}
Subtract 25 from 134 to get 109.
\frac{A\times 109}{5\times 40}
Multiply \frac{A}{5} times \frac{109}{40} by multiplying numerator times numerator and denominator times denominator.
\frac{A\times 109}{200}
Multiply 5 and 40 to get 200.
\frac{A}{5}\left(\frac{\frac{6+7}{10}}{\frac{1}{2}}+\frac{3}{4}-\frac{5}{8}\right)
Since \frac{6}{10} and \frac{7}{10} have the same denominator, add them by adding their numerators.
\frac{A}{5}\left(\frac{\frac{13}{10}}{\frac{1}{2}}+\frac{3}{4}-\frac{5}{8}\right)
Add 6 and 7 to get 13.
\frac{A}{5}\left(\frac{13}{10}\times 2+\frac{3}{4}-\frac{5}{8}\right)
Divide \frac{13}{10} by \frac{1}{2} by multiplying \frac{13}{10} by the reciprocal of \frac{1}{2}.
\frac{A}{5}\left(\frac{13\times 2}{10}+\frac{3}{4}-\frac{5}{8}\right)
Express \frac{13}{10}\times 2 as a single fraction.
\frac{A}{5}\left(\frac{26}{10}+\frac{3}{4}-\frac{5}{8}\right)
Multiply 13 and 2 to get 26.
\frac{A}{5}\left(\frac{13}{5}+\frac{3}{4}-\frac{5}{8}\right)
Reduce the fraction \frac{26}{10} to lowest terms by extracting and canceling out 2.
\frac{A}{5}\left(\frac{52}{20}+\frac{15}{20}-\frac{5}{8}\right)
Least common multiple of 5 and 4 is 20. Convert \frac{13}{5} and \frac{3}{4} to fractions with denominator 20.
\frac{A}{5}\left(\frac{52+15}{20}-\frac{5}{8}\right)
Since \frac{52}{20} and \frac{15}{20} have the same denominator, add them by adding their numerators.
\frac{A}{5}\left(\frac{67}{20}-\frac{5}{8}\right)
Add 52 and 15 to get 67.
\frac{A}{5}\left(\frac{134}{40}-\frac{25}{40}\right)
Least common multiple of 20 and 8 is 40. Convert \frac{67}{20} and \frac{5}{8} to fractions with denominator 40.
\frac{A}{5}\times \frac{134-25}{40}
Since \frac{134}{40} and \frac{25}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{A}{5}\times \frac{109}{40}
Subtract 25 from 134 to get 109.
\frac{A\times 109}{5\times 40}
Multiply \frac{A}{5} times \frac{109}{40} by multiplying numerator times numerator and denominator times denominator.
\frac{A\times 109}{200}
Multiply 5 and 40 to get 200.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}