Evaluate
\frac{333}{292}\approx 1.140410959
Factor
\frac{3 ^ {2} \cdot 37}{2 ^ {2} \cdot 73} = 1\frac{41}{292} = 1.1404109589041096
Share
Copied to clipboard
\begin{array}{l}\phantom{876)}\phantom{1}\\876\overline{)999}\\\end{array}
Use the 1^{st} digit 9 from dividend 999
\begin{array}{l}\phantom{876)}0\phantom{2}\\876\overline{)999}\\\end{array}
Since 9 is less than 876, use the next digit 9 from dividend 999 and add 0 to the quotient
\begin{array}{l}\phantom{876)}0\phantom{3}\\876\overline{)999}\\\end{array}
Use the 2^{nd} digit 9 from dividend 999
\begin{array}{l}\phantom{876)}00\phantom{4}\\876\overline{)999}\\\end{array}
Since 99 is less than 876, use the next digit 9 from dividend 999 and add 0 to the quotient
\begin{array}{l}\phantom{876)}00\phantom{5}\\876\overline{)999}\\\end{array}
Use the 3^{rd} digit 9 from dividend 999
\begin{array}{l}\phantom{876)}001\phantom{6}\\876\overline{)999}\\\phantom{876)}\underline{\phantom{}876\phantom{}}\\\phantom{876)}123\\\end{array}
Find closest multiple of 876 to 999. We see that 1 \times 876 = 876 is the nearest. Now subtract 876 from 999 to get reminder 123. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }123
Since 123 is less than 876, stop the division. The reminder is 123. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}