Evaluate
\frac{14052}{11}\approx 1277.454545455
Factor
\frac{2 ^ {2} \cdot 3 \cdot 1171}{11} = 1277\frac{5}{11} = 1277.4545454545455
Share
Copied to clipboard
\begin{array}{l}\phantom{77)}\phantom{1}\\77\overline{)98364}\\\end{array}
Use the 1^{st} digit 9 from dividend 98364
\begin{array}{l}\phantom{77)}0\phantom{2}\\77\overline{)98364}\\\end{array}
Since 9 is less than 77, use the next digit 8 from dividend 98364 and add 0 to the quotient
\begin{array}{l}\phantom{77)}0\phantom{3}\\77\overline{)98364}\\\end{array}
Use the 2^{nd} digit 8 from dividend 98364
\begin{array}{l}\phantom{77)}01\phantom{4}\\77\overline{)98364}\\\phantom{77)}\underline{\phantom{}77\phantom{999}}\\\phantom{77)}21\\\end{array}
Find closest multiple of 77 to 98. We see that 1 \times 77 = 77 is the nearest. Now subtract 77 from 98 to get reminder 21. Add 1 to quotient.
\begin{array}{l}\phantom{77)}01\phantom{5}\\77\overline{)98364}\\\phantom{77)}\underline{\phantom{}77\phantom{999}}\\\phantom{77)}213\\\end{array}
Use the 3^{rd} digit 3 from dividend 98364
\begin{array}{l}\phantom{77)}012\phantom{6}\\77\overline{)98364}\\\phantom{77)}\underline{\phantom{}77\phantom{999}}\\\phantom{77)}213\\\phantom{77)}\underline{\phantom{}154\phantom{99}}\\\phantom{77)9}59\\\end{array}
Find closest multiple of 77 to 213. We see that 2 \times 77 = 154 is the nearest. Now subtract 154 from 213 to get reminder 59. Add 2 to quotient.
\begin{array}{l}\phantom{77)}012\phantom{7}\\77\overline{)98364}\\\phantom{77)}\underline{\phantom{}77\phantom{999}}\\\phantom{77)}213\\\phantom{77)}\underline{\phantom{}154\phantom{99}}\\\phantom{77)9}596\\\end{array}
Use the 4^{th} digit 6 from dividend 98364
\begin{array}{l}\phantom{77)}0127\phantom{8}\\77\overline{)98364}\\\phantom{77)}\underline{\phantom{}77\phantom{999}}\\\phantom{77)}213\\\phantom{77)}\underline{\phantom{}154\phantom{99}}\\\phantom{77)9}596\\\phantom{77)}\underline{\phantom{9}539\phantom{9}}\\\phantom{77)99}57\\\end{array}
Find closest multiple of 77 to 596. We see that 7 \times 77 = 539 is the nearest. Now subtract 539 from 596 to get reminder 57. Add 7 to quotient.
\begin{array}{l}\phantom{77)}0127\phantom{9}\\77\overline{)98364}\\\phantom{77)}\underline{\phantom{}77\phantom{999}}\\\phantom{77)}213\\\phantom{77)}\underline{\phantom{}154\phantom{99}}\\\phantom{77)9}596\\\phantom{77)}\underline{\phantom{9}539\phantom{9}}\\\phantom{77)99}574\\\end{array}
Use the 5^{th} digit 4 from dividend 98364
\begin{array}{l}\phantom{77)}01277\phantom{10}\\77\overline{)98364}\\\phantom{77)}\underline{\phantom{}77\phantom{999}}\\\phantom{77)}213\\\phantom{77)}\underline{\phantom{}154\phantom{99}}\\\phantom{77)9}596\\\phantom{77)}\underline{\phantom{9}539\phantom{9}}\\\phantom{77)99}574\\\phantom{77)}\underline{\phantom{99}539\phantom{}}\\\phantom{77)999}35\\\end{array}
Find closest multiple of 77 to 574. We see that 7 \times 77 = 539 is the nearest. Now subtract 539 from 574 to get reminder 35. Add 7 to quotient.
\text{Quotient: }1277 \text{Reminder: }35
Since 35 is less than 77, stop the division. The reminder is 35. The topmost line 01277 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1277.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}