Evaluate
\frac{95}{92}\approx 1.032608696
Factor
\frac{5 \cdot 19}{2 ^ {2} \cdot 23} = 1\frac{3}{92} = 1.0326086956521738
Share
Copied to clipboard
\begin{array}{l}\phantom{92)}\phantom{1}\\92\overline{)95}\\\end{array}
Use the 1^{st} digit 9 from dividend 95
\begin{array}{l}\phantom{92)}0\phantom{2}\\92\overline{)95}\\\end{array}
Since 9 is less than 92, use the next digit 5 from dividend 95 and add 0 to the quotient
\begin{array}{l}\phantom{92)}0\phantom{3}\\92\overline{)95}\\\end{array}
Use the 2^{nd} digit 5 from dividend 95
\begin{array}{l}\phantom{92)}01\phantom{4}\\92\overline{)95}\\\phantom{92)}\underline{\phantom{}92\phantom{}}\\\phantom{92)9}3\\\end{array}
Find closest multiple of 92 to 95. We see that 1 \times 92 = 92 is the nearest. Now subtract 92 from 95 to get reminder 3. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }3
Since 3 is less than 92, stop the division. The reminder is 3. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}