Evaluate
\frac{946}{73}\approx 12.95890411
Factor
\frac{2 \cdot 11 \cdot 43}{73} = 12\frac{70}{73} = 12.95890410958904
Share
Copied to clipboard
\begin{array}{l}\phantom{73)}\phantom{1}\\73\overline{)946}\\\end{array}
Use the 1^{st} digit 9 from dividend 946
\begin{array}{l}\phantom{73)}0\phantom{2}\\73\overline{)946}\\\end{array}
Since 9 is less than 73, use the next digit 4 from dividend 946 and add 0 to the quotient
\begin{array}{l}\phantom{73)}0\phantom{3}\\73\overline{)946}\\\end{array}
Use the 2^{nd} digit 4 from dividend 946
\begin{array}{l}\phantom{73)}01\phantom{4}\\73\overline{)946}\\\phantom{73)}\underline{\phantom{}73\phantom{9}}\\\phantom{73)}21\\\end{array}
Find closest multiple of 73 to 94. We see that 1 \times 73 = 73 is the nearest. Now subtract 73 from 94 to get reminder 21. Add 1 to quotient.
\begin{array}{l}\phantom{73)}01\phantom{5}\\73\overline{)946}\\\phantom{73)}\underline{\phantom{}73\phantom{9}}\\\phantom{73)}216\\\end{array}
Use the 3^{rd} digit 6 from dividend 946
\begin{array}{l}\phantom{73)}012\phantom{6}\\73\overline{)946}\\\phantom{73)}\underline{\phantom{}73\phantom{9}}\\\phantom{73)}216\\\phantom{73)}\underline{\phantom{}146\phantom{}}\\\phantom{73)9}70\\\end{array}
Find closest multiple of 73 to 216. We see that 2 \times 73 = 146 is the nearest. Now subtract 146 from 216 to get reminder 70. Add 2 to quotient.
\text{Quotient: }12 \text{Reminder: }70
Since 70 is less than 73, stop the division. The reminder is 70. The topmost line 012 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}