Evaluate
\frac{470}{11}\approx 42.727272727
Factor
\frac{2 \cdot 5 \cdot 47}{11} = 42\frac{8}{11} = 42.72727272727273
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)940}\\\end{array}
Use the 1^{st} digit 9 from dividend 940
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)940}\\\end{array}
Since 9 is less than 22, use the next digit 4 from dividend 940 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)940}\\\end{array}
Use the 2^{nd} digit 4 from dividend 940
\begin{array}{l}\phantom{22)}04\phantom{4}\\22\overline{)940}\\\phantom{22)}\underline{\phantom{}88\phantom{9}}\\\phantom{22)9}6\\\end{array}
Find closest multiple of 22 to 94. We see that 4 \times 22 = 88 is the nearest. Now subtract 88 from 94 to get reminder 6. Add 4 to quotient.
\begin{array}{l}\phantom{22)}04\phantom{5}\\22\overline{)940}\\\phantom{22)}\underline{\phantom{}88\phantom{9}}\\\phantom{22)9}60\\\end{array}
Use the 3^{rd} digit 0 from dividend 940
\begin{array}{l}\phantom{22)}042\phantom{6}\\22\overline{)940}\\\phantom{22)}\underline{\phantom{}88\phantom{9}}\\\phantom{22)9}60\\\phantom{22)}\underline{\phantom{9}44\phantom{}}\\\phantom{22)9}16\\\end{array}
Find closest multiple of 22 to 60. We see that 2 \times 22 = 44 is the nearest. Now subtract 44 from 60 to get reminder 16. Add 2 to quotient.
\text{Quotient: }42 \text{Reminder: }16
Since 16 is less than 22, stop the division. The reminder is 16. The topmost line 042 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}