Evaluate
\frac{1869}{200}=9.345
Factor
\frac{3 \cdot 7 \cdot 89}{2 ^ {3} \cdot 5 ^ {2}} = 9\frac{69}{200} = 9.345
Share
Copied to clipboard
\begin{array}{l}\phantom{1000)}\phantom{1}\\1000\overline{)9345}\\\end{array}
Use the 1^{st} digit 9 from dividend 9345
\begin{array}{l}\phantom{1000)}0\phantom{2}\\1000\overline{)9345}\\\end{array}
Since 9 is less than 1000, use the next digit 3 from dividend 9345 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}0\phantom{3}\\1000\overline{)9345}\\\end{array}
Use the 2^{nd} digit 3 from dividend 9345
\begin{array}{l}\phantom{1000)}00\phantom{4}\\1000\overline{)9345}\\\end{array}
Since 93 is less than 1000, use the next digit 4 from dividend 9345 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}00\phantom{5}\\1000\overline{)9345}\\\end{array}
Use the 3^{rd} digit 4 from dividend 9345
\begin{array}{l}\phantom{1000)}000\phantom{6}\\1000\overline{)9345}\\\end{array}
Since 934 is less than 1000, use the next digit 5 from dividend 9345 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}000\phantom{7}\\1000\overline{)9345}\\\end{array}
Use the 4^{th} digit 5 from dividend 9345
\begin{array}{l}\phantom{1000)}0009\phantom{8}\\1000\overline{)9345}\\\phantom{1000)}\underline{\phantom{}9000\phantom{}}\\\phantom{1000)9}345\\\end{array}
Find closest multiple of 1000 to 9345. We see that 9 \times 1000 = 9000 is the nearest. Now subtract 9000 from 9345 to get reminder 345. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }345
Since 345 is less than 1000, stop the division. The reminder is 345. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}