Evaluate
\frac{226}{15}\approx 15.066666667
Factor
\frac{2 \cdot 113}{3 \cdot 5} = 15\frac{1}{15} = 15.066666666666666
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)904}\\\end{array}
Use the 1^{st} digit 9 from dividend 904
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)904}\\\end{array}
Since 9 is less than 60, use the next digit 0 from dividend 904 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)904}\\\end{array}
Use the 2^{nd} digit 0 from dividend 904
\begin{array}{l}\phantom{60)}01\phantom{4}\\60\overline{)904}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}30\\\end{array}
Find closest multiple of 60 to 90. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 90 to get reminder 30. Add 1 to quotient.
\begin{array}{l}\phantom{60)}01\phantom{5}\\60\overline{)904}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}304\\\end{array}
Use the 3^{rd} digit 4 from dividend 904
\begin{array}{l}\phantom{60)}015\phantom{6}\\60\overline{)904}\\\phantom{60)}\underline{\phantom{}60\phantom{9}}\\\phantom{60)}304\\\phantom{60)}\underline{\phantom{}300\phantom{}}\\\phantom{60)99}4\\\end{array}
Find closest multiple of 60 to 304. We see that 5 \times 60 = 300 is the nearest. Now subtract 300 from 304 to get reminder 4. Add 5 to quotient.
\text{Quotient: }15 \text{Reminder: }4
Since 4 is less than 60, stop the division. The reminder is 4. The topmost line 015 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}