Solve for x
x = \frac{\sqrt{15}}{2} \approx 1.936491673
x = -\frac{\sqrt{15}}{2} \approx -1.936491673
Graph
Share
Copied to clipboard
90=24x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
24x^{2}=90
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{90}{24}
Divide both sides by 24.
x^{2}=\frac{15}{4}
Reduce the fraction \frac{90}{24} to lowest terms by extracting and canceling out 6.
x=\frac{\sqrt{15}}{2} x=-\frac{\sqrt{15}}{2}
Take the square root of both sides of the equation.
90=24x^{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x^{2}.
24x^{2}=90
Swap sides so that all variable terms are on the left hand side.
24x^{2}-90=0
Subtract 90 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 24\left(-90\right)}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, 0 for b, and -90 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 24\left(-90\right)}}{2\times 24}
Square 0.
x=\frac{0±\sqrt{-96\left(-90\right)}}{2\times 24}
Multiply -4 times 24.
x=\frac{0±\sqrt{8640}}{2\times 24}
Multiply -96 times -90.
x=\frac{0±24\sqrt{15}}{2\times 24}
Take the square root of 8640.
x=\frac{0±24\sqrt{15}}{48}
Multiply 2 times 24.
x=\frac{\sqrt{15}}{2}
Now solve the equation x=\frac{0±24\sqrt{15}}{48} when ± is plus.
x=-\frac{\sqrt{15}}{2}
Now solve the equation x=\frac{0±24\sqrt{15}}{48} when ± is minus.
x=\frac{\sqrt{15}}{2} x=-\frac{\sqrt{15}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}