Solve for x
x = -\frac{6}{5} = -1\frac{1}{5} = -1.2
Graph
Share
Copied to clipboard
6\times 9x-2\left(6x-3\right)-3\left(4x-2\right)=15\left(x-1\right)+9
Multiply both sides of the equation by 30, the least common multiple of 5,15,10,2.
54x-2\left(6x-3\right)-3\left(4x-2\right)=15\left(x-1\right)+9
Multiply 6 and 9 to get 54.
54x-12x+6-3\left(4x-2\right)=15\left(x-1\right)+9
Use the distributive property to multiply -2 by 6x-3.
42x+6-3\left(4x-2\right)=15\left(x-1\right)+9
Combine 54x and -12x to get 42x.
42x+6-12x+6=15\left(x-1\right)+9
Use the distributive property to multiply -3 by 4x-2.
30x+6+6=15\left(x-1\right)+9
Combine 42x and -12x to get 30x.
30x+12=15\left(x-1\right)+9
Add 6 and 6 to get 12.
30x+12=15x-15+9
Use the distributive property to multiply 15 by x-1.
30x+12=15x-6
Add -15 and 9 to get -6.
30x+12-15x=-6
Subtract 15x from both sides.
15x+12=-6
Combine 30x and -15x to get 15x.
15x=-6-12
Subtract 12 from both sides.
15x=-18
Subtract 12 from -6 to get -18.
x=\frac{-18}{15}
Divide both sides by 15.
x=-\frac{6}{5}
Reduce the fraction \frac{-18}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}