Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(9-9i\right)\left(7-4i\right)}{\left(7+4i\right)\left(7-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-4i.
\frac{\left(9-9i\right)\left(7-4i\right)}{7^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9-9i\right)\left(7-4i\right)}{65}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 7+9\times \left(-4i\right)-9i\times 7-9\left(-4\right)i^{2}}{65}
Multiply complex numbers 9-9i and 7-4i like you multiply binomials.
\frac{9\times 7+9\times \left(-4i\right)-9i\times 7-9\left(-4\right)\left(-1\right)}{65}
By definition, i^{2} is -1.
\frac{63-36i-63i-36}{65}
Do the multiplications in 9\times 7+9\times \left(-4i\right)-9i\times 7-9\left(-4\right)\left(-1\right).
\frac{63-36+\left(-36-63\right)i}{65}
Combine the real and imaginary parts in 63-36i-63i-36.
\frac{27-99i}{65}
Do the additions in 63-36+\left(-36-63\right)i.
\frac{27}{65}-\frac{99}{65}i
Divide 27-99i by 65 to get \frac{27}{65}-\frac{99}{65}i.
Re(\frac{\left(9-9i\right)\left(7-4i\right)}{\left(7+4i\right)\left(7-4i\right)})
Multiply both numerator and denominator of \frac{9-9i}{7+4i} by the complex conjugate of the denominator, 7-4i.
Re(\frac{\left(9-9i\right)\left(7-4i\right)}{7^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(9-9i\right)\left(7-4i\right)}{65})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 7+9\times \left(-4i\right)-9i\times 7-9\left(-4\right)i^{2}}{65})
Multiply complex numbers 9-9i and 7-4i like you multiply binomials.
Re(\frac{9\times 7+9\times \left(-4i\right)-9i\times 7-9\left(-4\right)\left(-1\right)}{65})
By definition, i^{2} is -1.
Re(\frac{63-36i-63i-36}{65})
Do the multiplications in 9\times 7+9\times \left(-4i\right)-9i\times 7-9\left(-4\right)\left(-1\right).
Re(\frac{63-36+\left(-36-63\right)i}{65})
Combine the real and imaginary parts in 63-36i-63i-36.
Re(\frac{27-99i}{65})
Do the additions in 63-36+\left(-36-63\right)i.
Re(\frac{27}{65}-\frac{99}{65}i)
Divide 27-99i by 65 to get \frac{27}{65}-\frac{99}{65}i.
\frac{27}{65}
The real part of \frac{27}{65}-\frac{99}{65}i is \frac{27}{65}.