Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{9-7i}{3+i}\times 1
Divide 3-i by 3-i to get 1.
\frac{\left(9-7i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}\times 1
Multiply both numerator and denominator of \frac{9-7i}{3+i} by the complex conjugate of the denominator, 3-i.
\frac{20-30i}{10}\times 1
Do the multiplications in \frac{\left(9-7i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
\left(2-3i\right)\times 1
Divide 20-30i by 10 to get 2-3i.
2-3i
Multiply 2-3i and 1 to get 2-3i.
Re(\frac{9-7i}{3+i}\times 1)
Divide 3-i by 3-i to get 1.
Re(\frac{\left(9-7i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}\times 1)
Multiply both numerator and denominator of \frac{9-7i}{3+i} by the complex conjugate of the denominator, 3-i.
Re(\frac{20-30i}{10}\times 1)
Do the multiplications in \frac{\left(9-7i\right)\left(3-i\right)}{\left(3+i\right)\left(3-i\right)}.
Re(\left(2-3i\right)\times 1)
Divide 20-30i by 10 to get 2-3i.
Re(2-3i)
Multiply 2-3i and 1 to get 2-3i.
2
The real part of 2-3i is 2.