Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(9-2i\right)\left(\sqrt{5}-i\right)}{\left(\sqrt{5}+i\right)\left(\sqrt{5}-i\right)}
Rationalize the denominator of \frac{9-2i}{\sqrt{5}+i} by multiplying numerator and denominator by \sqrt{5}-i.
\frac{\left(9-2i\right)\left(\sqrt{5}-i\right)}{\left(\sqrt{5}\right)^{2}-i^{2}}
Consider \left(\sqrt{5}+i\right)\left(\sqrt{5}-i\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9-2i\right)\left(\sqrt{5}-i\right)}{5+1}
Square \sqrt{5}. Square i.
\frac{\left(9-2i\right)\left(\sqrt{5}-i\right)}{6}
Subtract -1 from 5 to get 6.
\left(\frac{3}{2}-\frac{1}{3}i\right)\left(\sqrt{5}-i\right)
Divide \left(9-2i\right)\left(\sqrt{5}-i\right) by 6 to get \left(\frac{3}{2}-\frac{1}{3}i\right)\left(\sqrt{5}-i\right).
\left(\frac{3}{2}-\frac{1}{3}i\right)\sqrt{5}+\left(-\frac{1}{3}-\frac{3}{2}i\right)
Use the distributive property to multiply \frac{3}{2}-\frac{1}{3}i by \sqrt{5}-i.