Evaluate
\sqrt{5}\left(\frac{3}{2}-\frac{1}{3}i\right)+\left(-\frac{1}{3}-\frac{3}{2}i\right)\approx 3.020768633-2.245355992i
Real Part
\frac{3 \sqrt{5}}{2} - \frac{1}{3} = 3.020768633
Share
Copied to clipboard
\frac{\left(9-2i\right)\left(\sqrt{5}-i\right)}{\left(\sqrt{5}+i\right)\left(\sqrt{5}-i\right)}
Rationalize the denominator of \frac{9-2i}{\sqrt{5}+i} by multiplying numerator and denominator by \sqrt{5}-i.
\frac{\left(9-2i\right)\left(\sqrt{5}-i\right)}{\left(\sqrt{5}\right)^{2}-i^{2}}
Consider \left(\sqrt{5}+i\right)\left(\sqrt{5}-i\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9-2i\right)\left(\sqrt{5}-i\right)}{5+1}
Square \sqrt{5}. Square i.
\frac{\left(9-2i\right)\left(\sqrt{5}-i\right)}{6}
Subtract -1 from 5 to get 6.
\left(\frac{3}{2}-\frac{1}{3}i\right)\left(\sqrt{5}-i\right)
Divide \left(9-2i\right)\left(\sqrt{5}-i\right) by 6 to get \left(\frac{3}{2}-\frac{1}{3}i\right)\left(\sqrt{5}-i\right).
\left(\frac{3}{2}-\frac{1}{3}i\right)\sqrt{5}+\left(-\frac{1}{3}-\frac{3}{2}i\right)
Use the distributive property to multiply \frac{3}{2}-\frac{1}{3}i by \sqrt{5}-i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}