Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(9-16x^{2}\right)\left(4x^{2}-y^{2}\right)}{\left(2x+y\right)\left(3x-4x^{2}\right)}
Divide \frac{9-16x^{2}}{2x+y} by \frac{3x-4x^{2}}{4x^{2}-y^{2}} by multiplying \frac{9-16x^{2}}{2x+y} by the reciprocal of \frac{3x-4x^{2}}{4x^{2}-y^{2}}.
\frac{\left(-4x-3\right)\left(4x-3\right)\left(2x+y\right)\left(2x-y\right)}{x\left(-4x+3\right)\left(2x+y\right)}
Factor the expressions that are not already factored.
\frac{-\left(-4x-3\right)\left(-4x+3\right)\left(2x+y\right)\left(2x-y\right)}{x\left(-4x+3\right)\left(2x+y\right)}
Extract the negative sign in -3+4x.
\frac{-\left(-4x-3\right)\left(2x-y\right)}{x}
Cancel out \left(-4x+3\right)\left(2x+y\right) in both numerator and denominator.
\frac{8x^{2}-4xy+6x-3y}{x}
Expand the expression.
\frac{\left(9-16x^{2}\right)\left(4x^{2}-y^{2}\right)}{\left(2x+y\right)\left(3x-4x^{2}\right)}
Divide \frac{9-16x^{2}}{2x+y} by \frac{3x-4x^{2}}{4x^{2}-y^{2}} by multiplying \frac{9-16x^{2}}{2x+y} by the reciprocal of \frac{3x-4x^{2}}{4x^{2}-y^{2}}.
\frac{\left(-4x-3\right)\left(4x-3\right)\left(2x+y\right)\left(2x-y\right)}{x\left(-4x+3\right)\left(2x+y\right)}
Factor the expressions that are not already factored.
\frac{-\left(-4x-3\right)\left(-4x+3\right)\left(2x+y\right)\left(2x-y\right)}{x\left(-4x+3\right)\left(2x+y\right)}
Extract the negative sign in -3+4x.
\frac{-\left(-4x-3\right)\left(2x-y\right)}{x}
Cancel out \left(-4x+3\right)\left(2x+y\right) in both numerator and denominator.
\frac{8x^{2}-4xy+6x-3y}{x}
Expand the expression.