Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{9}{\left(x-3\right)\left(x+3\right)}+\frac{3}{2\left(x+3\right)}
Factor x^{2}-9. Factor 2x+6.
\frac{9\times 2}{2\left(x-3\right)\left(x+3\right)}+\frac{3\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and 2\left(x+3\right) is 2\left(x-3\right)\left(x+3\right). Multiply \frac{9}{\left(x-3\right)\left(x+3\right)} times \frac{2}{2}. Multiply \frac{3}{2\left(x+3\right)} times \frac{x-3}{x-3}.
\frac{9\times 2+3\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}
Since \frac{9\times 2}{2\left(x-3\right)\left(x+3\right)} and \frac{3\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators.
\frac{18+3x-9}{2\left(x-3\right)\left(x+3\right)}
Do the multiplications in 9\times 2+3\left(x-3\right).
\frac{9+3x}{2\left(x-3\right)\left(x+3\right)}
Combine like terms in 18+3x-9.
\frac{3\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored in \frac{9+3x}{2\left(x-3\right)\left(x+3\right)}.
\frac{3}{2\left(x-3\right)}
Cancel out x+3 in both numerator and denominator.
\frac{3}{2x-6}
Expand 2\left(x-3\right).