\frac { 9 } { 9 + x } = \frac { 4 } { 4 + x } + 10 \%
Solve for x
x=1
x=36
Graph
Share
Copied to clipboard
\left(100x+400\right)\times 9=\left(100x+900\right)\times 4+\left(x+4\right)\left(x+9\right)\times 10
Variable x cannot be equal to any of the values -9,-4 since division by zero is not defined. Multiply both sides of the equation by 100\left(x+4\right)\left(x+9\right), the least common multiple of 9+x,4+x,100.
900x+3600=\left(100x+900\right)\times 4+\left(x+4\right)\left(x+9\right)\times 10
Use the distributive property to multiply 100x+400 by 9.
900x+3600=400x+3600+\left(x+4\right)\left(x+9\right)\times 10
Use the distributive property to multiply 100x+900 by 4.
900x+3600=400x+3600+\left(x^{2}+13x+36\right)\times 10
Use the distributive property to multiply x+4 by x+9 and combine like terms.
900x+3600=400x+3600+10x^{2}+130x+360
Use the distributive property to multiply x^{2}+13x+36 by 10.
900x+3600=530x+3600+10x^{2}+360
Combine 400x and 130x to get 530x.
900x+3600=530x+3960+10x^{2}
Add 3600 and 360 to get 3960.
900x+3600-530x=3960+10x^{2}
Subtract 530x from both sides.
370x+3600=3960+10x^{2}
Combine 900x and -530x to get 370x.
370x+3600-3960=10x^{2}
Subtract 3960 from both sides.
370x-360=10x^{2}
Subtract 3960 from 3600 to get -360.
370x-360-10x^{2}=0
Subtract 10x^{2} from both sides.
-10x^{2}+370x-360=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-370±\sqrt{370^{2}-4\left(-10\right)\left(-360\right)}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 370 for b, and -360 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-370±\sqrt{136900-4\left(-10\right)\left(-360\right)}}{2\left(-10\right)}
Square 370.
x=\frac{-370±\sqrt{136900+40\left(-360\right)}}{2\left(-10\right)}
Multiply -4 times -10.
x=\frac{-370±\sqrt{136900-14400}}{2\left(-10\right)}
Multiply 40 times -360.
x=\frac{-370±\sqrt{122500}}{2\left(-10\right)}
Add 136900 to -14400.
x=\frac{-370±350}{2\left(-10\right)}
Take the square root of 122500.
x=\frac{-370±350}{-20}
Multiply 2 times -10.
x=-\frac{20}{-20}
Now solve the equation x=\frac{-370±350}{-20} when ± is plus. Add -370 to 350.
x=1
Divide -20 by -20.
x=-\frac{720}{-20}
Now solve the equation x=\frac{-370±350}{-20} when ± is minus. Subtract 350 from -370.
x=36
Divide -720 by -20.
x=1 x=36
The equation is now solved.
\left(100x+400\right)\times 9=\left(100x+900\right)\times 4+\left(x+4\right)\left(x+9\right)\times 10
Variable x cannot be equal to any of the values -9,-4 since division by zero is not defined. Multiply both sides of the equation by 100\left(x+4\right)\left(x+9\right), the least common multiple of 9+x,4+x,100.
900x+3600=\left(100x+900\right)\times 4+\left(x+4\right)\left(x+9\right)\times 10
Use the distributive property to multiply 100x+400 by 9.
900x+3600=400x+3600+\left(x+4\right)\left(x+9\right)\times 10
Use the distributive property to multiply 100x+900 by 4.
900x+3600=400x+3600+\left(x^{2}+13x+36\right)\times 10
Use the distributive property to multiply x+4 by x+9 and combine like terms.
900x+3600=400x+3600+10x^{2}+130x+360
Use the distributive property to multiply x^{2}+13x+36 by 10.
900x+3600=530x+3600+10x^{2}+360
Combine 400x and 130x to get 530x.
900x+3600=530x+3960+10x^{2}
Add 3600 and 360 to get 3960.
900x+3600-530x=3960+10x^{2}
Subtract 530x from both sides.
370x+3600=3960+10x^{2}
Combine 900x and -530x to get 370x.
370x+3600-10x^{2}=3960
Subtract 10x^{2} from both sides.
370x-10x^{2}=3960-3600
Subtract 3600 from both sides.
370x-10x^{2}=360
Subtract 3600 from 3960 to get 360.
-10x^{2}+370x=360
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10x^{2}+370x}{-10}=\frac{360}{-10}
Divide both sides by -10.
x^{2}+\frac{370}{-10}x=\frac{360}{-10}
Dividing by -10 undoes the multiplication by -10.
x^{2}-37x=\frac{360}{-10}
Divide 370 by -10.
x^{2}-37x=-36
Divide 360 by -10.
x^{2}-37x+\left(-\frac{37}{2}\right)^{2}=-36+\left(-\frac{37}{2}\right)^{2}
Divide -37, the coefficient of the x term, by 2 to get -\frac{37}{2}. Then add the square of -\frac{37}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-37x+\frac{1369}{4}=-36+\frac{1369}{4}
Square -\frac{37}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-37x+\frac{1369}{4}=\frac{1225}{4}
Add -36 to \frac{1369}{4}.
\left(x-\frac{37}{2}\right)^{2}=\frac{1225}{4}
Factor x^{2}-37x+\frac{1369}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{37}{2}\right)^{2}}=\sqrt{\frac{1225}{4}}
Take the square root of both sides of the equation.
x-\frac{37}{2}=\frac{35}{2} x-\frac{37}{2}=-\frac{35}{2}
Simplify.
x=36 x=1
Add \frac{37}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}