Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{9\left(7+i\right)}{\left(7-i\right)\left(7+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7+i.
\frac{9\left(7+i\right)}{7^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{9\left(7+i\right)}{50}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 7+9i}{50}
Multiply 9 times 7+i.
\frac{63+9i}{50}
Do the multiplications in 9\times 7+9i.
\frac{63}{50}+\frac{9}{50}i
Divide 63+9i by 50 to get \frac{63}{50}+\frac{9}{50}i.
Re(\frac{9\left(7+i\right)}{\left(7-i\right)\left(7+i\right)})
Multiply both numerator and denominator of \frac{9}{7-i} by the complex conjugate of the denominator, 7+i.
Re(\frac{9\left(7+i\right)}{7^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{9\left(7+i\right)}{50})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 7+9i}{50})
Multiply 9 times 7+i.
Re(\frac{63+9i}{50})
Do the multiplications in 9\times 7+9i.
Re(\frac{63}{50}+\frac{9}{50}i)
Divide 63+9i by 50 to get \frac{63}{50}+\frac{9}{50}i.
\frac{63}{50}
The real part of \frac{63}{50}+\frac{9}{50}i is \frac{63}{50}.