Solve for a
a=\frac{17b}{10}
b\neq 0
Solve for b
b=\frac{10a}{17}
a\neq 0
Quiz
Linear Equation
5 problems similar to:
\frac { 9 } { 6 } + \frac { 2 } { 10 } = \frac { a } { b }
Share
Copied to clipboard
5b\times 9+3b\times 2=30a
Multiply both sides of the equation by 30b, the least common multiple of 6,10,b.
45b+3b\times 2=30a
Multiply 5 and 9 to get 45.
45b+6b=30a
Multiply 3 and 2 to get 6.
51b=30a
Combine 45b and 6b to get 51b.
30a=51b
Swap sides so that all variable terms are on the left hand side.
\frac{30a}{30}=\frac{51b}{30}
Divide both sides by 30.
a=\frac{51b}{30}
Dividing by 30 undoes the multiplication by 30.
a=\frac{17b}{10}
Divide 51b by 30.
5b\times 9+3b\times 2=30a
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30b, the least common multiple of 6,10,b.
45b+3b\times 2=30a
Multiply 5 and 9 to get 45.
45b+6b=30a
Multiply 3 and 2 to get 6.
51b=30a
Combine 45b and 6b to get 51b.
\frac{51b}{51}=\frac{30a}{51}
Divide both sides by 51.
b=\frac{30a}{51}
Dividing by 51 undoes the multiplication by 51.
b=\frac{10a}{17}
Divide 30a by 51.
b=\frac{10a}{17}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}