Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{9}{\left(2x-7\right)\left(x+4\right)}-\frac{3}{\left(x-1\right)\left(2x-7\right)}
Factor 2x^{2}+x-28. Factor 2x^{2}-9x+7.
\frac{9\left(x-1\right)}{\left(x-1\right)\left(2x-7\right)\left(x+4\right)}-\frac{3\left(x+4\right)}{\left(x-1\right)\left(2x-7\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(2x-7\right)\left(x+4\right) and \left(x-1\right)\left(2x-7\right) is \left(x-1\right)\left(2x-7\right)\left(x+4\right). Multiply \frac{9}{\left(2x-7\right)\left(x+4\right)} times \frac{x-1}{x-1}. Multiply \frac{3}{\left(x-1\right)\left(2x-7\right)} times \frac{x+4}{x+4}.
\frac{9\left(x-1\right)-3\left(x+4\right)}{\left(x-1\right)\left(2x-7\right)\left(x+4\right)}
Since \frac{9\left(x-1\right)}{\left(x-1\right)\left(2x-7\right)\left(x+4\right)} and \frac{3\left(x+4\right)}{\left(x-1\right)\left(2x-7\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{9x-9-3x-12}{\left(x-1\right)\left(2x-7\right)\left(x+4\right)}
Do the multiplications in 9\left(x-1\right)-3\left(x+4\right).
\frac{6x-21}{\left(x-1\right)\left(2x-7\right)\left(x+4\right)}
Combine like terms in 9x-9-3x-12.
\frac{3\left(2x-7\right)}{\left(x-1\right)\left(2x-7\right)\left(x+4\right)}
Factor the expressions that are not already factored in \frac{6x-21}{\left(x-1\right)\left(2x-7\right)\left(x+4\right)}.
\frac{3}{\left(x-1\right)\left(x+4\right)}
Cancel out 2x-7 in both numerator and denominator.
\frac{3}{x^{2}+3x-4}
Expand \left(x-1\right)\left(x+4\right).