Verify
false
Share
Copied to clipboard
\frac{99}{143}+\frac{65}{143}=\frac{4}{13}+\frac{6}{11}
Least common multiple of 13 and 11 is 143. Convert \frac{9}{13} and \frac{5}{11} to fractions with denominator 143.
\frac{99+65}{143}=\frac{4}{13}+\frac{6}{11}
Since \frac{99}{143} and \frac{65}{143} have the same denominator, add them by adding their numerators.
\frac{164}{143}=\frac{4}{13}+\frac{6}{11}
Add 99 and 65 to get 164.
\frac{164}{143}=\frac{44}{143}+\frac{78}{143}
Least common multiple of 13 and 11 is 143. Convert \frac{4}{13} and \frac{6}{11} to fractions with denominator 143.
\frac{164}{143}=\frac{44+78}{143}
Since \frac{44}{143} and \frac{78}{143} have the same denominator, add them by adding their numerators.
\frac{164}{143}=\frac{122}{143}
Add 44 and 78 to get 122.
\text{false}
Compare \frac{164}{143} and \frac{122}{143}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}