Solve for x
x=\frac{3}{5}=0.6
Graph
Share
Copied to clipboard
\frac{\frac{9\times 2}{1250}\times \frac{5}{2}}{3\times \frac{3}{10}\left(\frac{3}{4}-\frac{1}{12}\right)\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Express \frac{9}{1250}\times 2 as a single fraction.
\frac{\frac{18}{1250}\times \frac{5}{2}}{3\times \frac{3}{10}\left(\frac{3}{4}-\frac{1}{12}\right)\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Multiply 9 and 2 to get 18.
\frac{\frac{9}{625}\times \frac{5}{2}}{3\times \frac{3}{10}\left(\frac{3}{4}-\frac{1}{12}\right)\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Reduce the fraction \frac{18}{1250} to lowest terms by extracting and canceling out 2.
\frac{\frac{9\times 5}{625\times 2}}{3\times \frac{3}{10}\left(\frac{3}{4}-\frac{1}{12}\right)\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Multiply \frac{9}{625} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{45}{1250}}{3\times \frac{3}{10}\left(\frac{3}{4}-\frac{1}{12}\right)\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Do the multiplications in the fraction \frac{9\times 5}{625\times 2}.
\frac{\frac{9}{250}}{3\times \frac{3}{10}\left(\frac{3}{4}-\frac{1}{12}\right)\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Reduce the fraction \frac{45}{1250} to lowest terms by extracting and canceling out 5.
\frac{\frac{9}{250}}{\frac{3\times 3}{10}\left(\frac{3}{4}-\frac{1}{12}\right)\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Express 3\times \frac{3}{10} as a single fraction.
\frac{\frac{9}{250}}{\frac{9}{10}\left(\frac{3}{4}-\frac{1}{12}\right)\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Multiply 3 and 3 to get 9.
\frac{\frac{9}{250}}{\frac{9}{10}\left(\frac{9}{12}-\frac{1}{12}\right)\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Least common multiple of 4 and 12 is 12. Convert \frac{3}{4} and \frac{1}{12} to fractions with denominator 12.
\frac{\frac{9}{250}}{\frac{9}{10}\times \frac{9-1}{12}\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Since \frac{9}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9}{250}}{\frac{9}{10}\times \frac{8}{12}\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Subtract 1 from 9 to get 8.
\frac{\frac{9}{250}}{\frac{9}{10}\times \frac{2}{3}\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Reduce the fraction \frac{8}{12} to lowest terms by extracting and canceling out 4.
\frac{\frac{9}{250}}{\frac{9\times 2}{10\times 3}\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Multiply \frac{9}{10} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{9}{250}}{\frac{18}{30}\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Do the multiplications in the fraction \frac{9\times 2}{10\times 3}.
\frac{\frac{9}{250}}{\frac{3}{5}\left(\frac{1}{6}+\frac{1}{3}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Reduce the fraction \frac{18}{30} to lowest terms by extracting and canceling out 6.
\frac{\frac{9}{250}}{\frac{3}{5}\left(\frac{1}{6}+\frac{2}{6}\right)}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Least common multiple of 6 and 3 is 6. Convert \frac{1}{6} and \frac{1}{3} to fractions with denominator 6.
\frac{\frac{9}{250}}{\frac{3}{5}\times \frac{1+2}{6}}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Since \frac{1}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{9}{250}}{\frac{3}{5}\times \frac{3}{6}}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Add 1 and 2 to get 3.
\frac{\frac{9}{250}}{\frac{3}{5}\times \frac{1}{2}}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{\frac{9}{250}}{\frac{3\times 1}{5\times 2}}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Multiply \frac{3}{5} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{9}{250}}{\frac{3}{10}}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Do the multiplications in the fraction \frac{3\times 1}{5\times 2}.
\frac{9}{250}\times \frac{10}{3}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Divide \frac{9}{250} by \frac{3}{10} by multiplying \frac{9}{250} by the reciprocal of \frac{3}{10}.
\frac{9\times 10}{250\times 3}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Multiply \frac{9}{250} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{90}{750}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Do the multiplications in the fraction \frac{9\times 10}{250\times 3}.
\frac{3}{25}=\frac{x}{\left(28-6\right)\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Reduce the fraction \frac{90}{750} to lowest terms by extracting and canceling out 30.
\frac{3}{25}=\frac{x}{22\times \frac{1}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Subtract 6 from 28 to get 22.
\frac{3}{25}=\frac{x}{\frac{22}{3}-\left(\frac{43}{40}\times \frac{10}{3}-\frac{5}{4}\right)}
Multiply 22 and \frac{1}{3} to get \frac{22}{3}.
\frac{3}{25}=\frac{x}{\frac{22}{3}-\left(\frac{43\times 10}{40\times 3}-\frac{5}{4}\right)}
Multiply \frac{43}{40} times \frac{10}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{25}=\frac{x}{\frac{22}{3}-\left(\frac{430}{120}-\frac{5}{4}\right)}
Do the multiplications in the fraction \frac{43\times 10}{40\times 3}.
\frac{3}{25}=\frac{x}{\frac{22}{3}-\left(\frac{43}{12}-\frac{5}{4}\right)}
Reduce the fraction \frac{430}{120} to lowest terms by extracting and canceling out 10.
\frac{3}{25}=\frac{x}{\frac{22}{3}-\left(\frac{43}{12}-\frac{15}{12}\right)}
Least common multiple of 12 and 4 is 12. Convert \frac{43}{12} and \frac{5}{4} to fractions with denominator 12.
\frac{3}{25}=\frac{x}{\frac{22}{3}-\frac{43-15}{12}}
Since \frac{43}{12} and \frac{15}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{25}=\frac{x}{\frac{22}{3}-\frac{28}{12}}
Subtract 15 from 43 to get 28.
\frac{3}{25}=\frac{x}{\frac{22}{3}-\frac{7}{3}}
Reduce the fraction \frac{28}{12} to lowest terms by extracting and canceling out 4.
\frac{3}{25}=\frac{x}{\frac{22-7}{3}}
Since \frac{22}{3} and \frac{7}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{3}{25}=\frac{x}{\frac{15}{3}}
Subtract 7 from 22 to get 15.
\frac{3}{25}=\frac{x}{5}
Divide 15 by 3 to get 5.
\frac{x}{5}=\frac{3}{25}
Swap sides so that all variable terms are on the left hand side.
x=\frac{3}{25}\times 5
Multiply both sides by 5.
x=\frac{3\times 5}{25}
Express \frac{3}{25}\times 5 as a single fraction.
x=\frac{15}{25}
Multiply 3 and 5 to get 15.
x=\frac{3}{5}
Reduce the fraction \frac{15}{25} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}