Solve for b
b = \frac{20 \sqrt{91}}{91} \approx 2.096569673
b = -\frac{20 \sqrt{91}}{91} \approx -2.096569673
Share
Copied to clipboard
\frac{1}{100}b^{2}\times 9+4=b^{2}
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b^{2}.
\frac{9}{100}b^{2}+4=b^{2}
Multiply \frac{1}{100} and 9 to get \frac{9}{100}.
\frac{9}{100}b^{2}+4-b^{2}=0
Subtract b^{2} from both sides.
-\frac{91}{100}b^{2}+4=0
Combine \frac{9}{100}b^{2} and -b^{2} to get -\frac{91}{100}b^{2}.
-\frac{91}{100}b^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
b^{2}=-4\left(-\frac{100}{91}\right)
Multiply both sides by -\frac{100}{91}, the reciprocal of -\frac{91}{100}.
b^{2}=\frac{400}{91}
Multiply -4 and -\frac{100}{91} to get \frac{400}{91}.
b=\frac{20\sqrt{91}}{91} b=-\frac{20\sqrt{91}}{91}
Take the square root of both sides of the equation.
\frac{1}{100}b^{2}\times 9+4=b^{2}
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by b^{2}.
\frac{9}{100}b^{2}+4=b^{2}
Multiply \frac{1}{100} and 9 to get \frac{9}{100}.
\frac{9}{100}b^{2}+4-b^{2}=0
Subtract b^{2} from both sides.
-\frac{91}{100}b^{2}+4=0
Combine \frac{9}{100}b^{2} and -b^{2} to get -\frac{91}{100}b^{2}.
b=\frac{0±\sqrt{0^{2}-4\left(-\frac{91}{100}\right)\times 4}}{2\left(-\frac{91}{100}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{91}{100} for a, 0 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-\frac{91}{100}\right)\times 4}}{2\left(-\frac{91}{100}\right)}
Square 0.
b=\frac{0±\sqrt{\frac{91}{25}\times 4}}{2\left(-\frac{91}{100}\right)}
Multiply -4 times -\frac{91}{100}.
b=\frac{0±\sqrt{\frac{364}{25}}}{2\left(-\frac{91}{100}\right)}
Multiply \frac{91}{25} times 4.
b=\frac{0±\frac{2\sqrt{91}}{5}}{2\left(-\frac{91}{100}\right)}
Take the square root of \frac{364}{25}.
b=\frac{0±\frac{2\sqrt{91}}{5}}{-\frac{91}{50}}
Multiply 2 times -\frac{91}{100}.
b=-\frac{20\sqrt{91}}{91}
Now solve the equation b=\frac{0±\frac{2\sqrt{91}}{5}}{-\frac{91}{50}} when ± is plus.
b=\frac{20\sqrt{91}}{91}
Now solve the equation b=\frac{0±\frac{2\sqrt{91}}{5}}{-\frac{91}{50}} when ± is minus.
b=-\frac{20\sqrt{91}}{91} b=\frac{20\sqrt{91}}{91}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}