Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

\frac{9\times 3\times 3-27}{3^{15}\times 2^{3}}=\frac{1}{27}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{27\times 3-27}{3^{15}\times 2^{3}}=\frac{1}{27}
Multiply 9 and 3 to get 27.
\frac{81-27}{3^{15}\times 2^{3}}=\frac{1}{27}
Multiply 27 and 3 to get 81.
\frac{54}{3^{15}\times 2^{3}}=\frac{1}{27}
Subtract 27 from 81 to get 54.
\frac{54}{14348907\times 2^{3}}=\frac{1}{27}
Calculate 3 to the power of 15 and get 14348907.
\frac{54}{14348907\times 8}=\frac{1}{27}
Calculate 2 to the power of 3 and get 8.
\frac{54}{114791256}=\frac{1}{27}
Multiply 14348907 and 8 to get 114791256.
\frac{1}{2125764}=\frac{1}{27}
Reduce the fraction \frac{54}{114791256} to lowest terms by extracting and canceling out 54.
\frac{1}{2125764}=\frac{78732}{2125764}
Least common multiple of 2125764 and 27 is 2125764. Convert \frac{1}{2125764} and \frac{1}{27} to fractions with denominator 2125764.
\text{false}
Compare \frac{1}{2125764} and \frac{78732}{2125764}.