Verify
false
Share
Copied to clipboard
\frac{9\times 3\times 3-27}{3^{15}\times 2^{3}}=\frac{1}{27}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{27\times 3-27}{3^{15}\times 2^{3}}=\frac{1}{27}
Multiply 9 and 3 to get 27.
\frac{81-27}{3^{15}\times 2^{3}}=\frac{1}{27}
Multiply 27 and 3 to get 81.
\frac{54}{3^{15}\times 2^{3}}=\frac{1}{27}
Subtract 27 from 81 to get 54.
\frac{54}{14348907\times 2^{3}}=\frac{1}{27}
Calculate 3 to the power of 15 and get 14348907.
\frac{54}{14348907\times 8}=\frac{1}{27}
Calculate 2 to the power of 3 and get 8.
\frac{54}{114791256}=\frac{1}{27}
Multiply 14348907 and 8 to get 114791256.
\frac{1}{2125764}=\frac{1}{27}
Reduce the fraction \frac{54}{114791256} to lowest terms by extracting and canceling out 54.
\frac{1}{2125764}=\frac{78732}{2125764}
Least common multiple of 2125764 and 27 is 2125764. Convert \frac{1}{2125764} and \frac{1}{27} to fractions with denominator 2125764.
\text{false}
Compare \frac{1}{2125764} and \frac{78732}{2125764}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}