Evaluate
\frac{9\sqrt{3}}{4}-\frac{9}{16}\approx 3.334614317
Factor
\frac{9 {(4 \sqrt{3} - 1)}}{16} = 3.3346143170299736
Share
Copied to clipboard
\frac{9\sqrt{3}}{4}+\frac{1}{4}\left(\frac{9}{4}-\frac{18}{4}\right)
Least common multiple of 4 and 2 is 4. Convert \frac{9}{4} and \frac{9}{2} to fractions with denominator 4.
\frac{9\sqrt{3}}{4}+\frac{1}{4}\times \frac{9-18}{4}
Since \frac{9}{4} and \frac{18}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{9\sqrt{3}}{4}+\frac{1}{4}\left(-\frac{9}{4}\right)
Subtract 18 from 9 to get -9.
\frac{9\sqrt{3}}{4}+\frac{1\left(-9\right)}{4\times 4}
Multiply \frac{1}{4} times -\frac{9}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{9\sqrt{3}}{4}+\frac{-9}{16}
Do the multiplications in the fraction \frac{1\left(-9\right)}{4\times 4}.
\frac{9\sqrt{3}}{4}-\frac{9}{16}
Fraction \frac{-9}{16} can be rewritten as -\frac{9}{16} by extracting the negative sign.
\frac{4\times 9\sqrt{3}}{16}-\frac{9}{16}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 16 is 16. Multiply \frac{9\sqrt{3}}{4} times \frac{4}{4}.
\frac{4\times 9\sqrt{3}-9}{16}
Since \frac{4\times 9\sqrt{3}}{16} and \frac{9}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{36\sqrt{3}-9}{16}
Do the multiplications in 4\times 9\sqrt{3}-9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}