Evaluate
2
Factor
2
Share
Copied to clipboard
\frac{\frac{\left(9\times 5+4\right)\times 3}{5\left(4\times 3+2\right)}+\frac{\frac{3\times 3+2}{3}}{\frac{1\times 3+1}{3}}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Divide \frac{9\times 5+4}{5} by \frac{4\times 3+2}{3} by multiplying \frac{9\times 5+4}{5} by the reciprocal of \frac{4\times 3+2}{3}.
\frac{\frac{\left(45+4\right)\times 3}{5\left(4\times 3+2\right)}+\frac{\frac{3\times 3+2}{3}}{\frac{1\times 3+1}{3}}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Multiply 9 and 5 to get 45.
\frac{\frac{49\times 3}{5\left(4\times 3+2\right)}+\frac{\frac{3\times 3+2}{3}}{\frac{1\times 3+1}{3}}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Add 45 and 4 to get 49.
\frac{\frac{147}{5\left(4\times 3+2\right)}+\frac{\frac{3\times 3+2}{3}}{\frac{1\times 3+1}{3}}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Multiply 49 and 3 to get 147.
\frac{\frac{147}{5\left(12+2\right)}+\frac{\frac{3\times 3+2}{3}}{\frac{1\times 3+1}{3}}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Multiply 4 and 3 to get 12.
\frac{\frac{147}{5\times 14}+\frac{\frac{3\times 3+2}{3}}{\frac{1\times 3+1}{3}}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Add 12 and 2 to get 14.
\frac{\frac{147}{70}+\frac{\frac{3\times 3+2}{3}}{\frac{1\times 3+1}{3}}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Multiply 5 and 14 to get 70.
\frac{\frac{21}{10}+\frac{\frac{3\times 3+2}{3}}{\frac{1\times 3+1}{3}}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Reduce the fraction \frac{147}{70} to lowest terms by extracting and canceling out 7.
\frac{\frac{21}{10}+\frac{\left(3\times 3+2\right)\times 3}{3\left(1\times 3+1\right)}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Divide \frac{3\times 3+2}{3} by \frac{1\times 3+1}{3} by multiplying \frac{3\times 3+2}{3} by the reciprocal of \frac{1\times 3+1}{3}.
\frac{\frac{21}{10}+\frac{2+3\times 3}{1+3}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Cancel out 3 in both numerator and denominator.
\frac{\frac{21}{10}+\frac{2+9}{1+3}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Multiply 3 and 3 to get 9.
\frac{\frac{21}{10}+\frac{11}{1+3}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Add 2 and 9 to get 11.
\frac{\frac{21}{10}+\frac{11}{4}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Add 1 and 3 to get 4.
\frac{\frac{42}{20}+\frac{55}{20}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Least common multiple of 10 and 4 is 20. Convert \frac{21}{10} and \frac{11}{4} to fractions with denominator 20.
\frac{\frac{42+55}{20}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Since \frac{42}{20} and \frac{55}{20} have the same denominator, add them by adding their numerators.
\frac{\frac{97}{20}-\frac{1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Add 42 and 55 to get 97.
\frac{\frac{97-1}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Since \frac{97}{20} and \frac{1}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{96}{20}}{\frac{6}{\frac{2\times 2+1}{2}}}
Subtract 1 from 97 to get 96.
\frac{\frac{24}{5}}{\frac{6}{\frac{2\times 2+1}{2}}}
Reduce the fraction \frac{96}{20} to lowest terms by extracting and canceling out 4.
\frac{\frac{24}{5}}{\frac{6\times 2}{2\times 2+1}}
Divide 6 by \frac{2\times 2+1}{2} by multiplying 6 by the reciprocal of \frac{2\times 2+1}{2}.
\frac{\frac{24}{5}}{\frac{12}{2\times 2+1}}
Multiply 6 and 2 to get 12.
\frac{\frac{24}{5}}{\frac{12}{4+1}}
Multiply 2 and 2 to get 4.
\frac{\frac{24}{5}}{\frac{12}{5}}
Add 4 and 1 to get 5.
\frac{24}{5}\times \frac{5}{12}
Divide \frac{24}{5} by \frac{12}{5} by multiplying \frac{24}{5} by the reciprocal of \frac{12}{5}.
\frac{24\times 5}{5\times 12}
Multiply \frac{24}{5} times \frac{5}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{24}{12}
Cancel out 5 in both numerator and denominator.
2
Divide 24 by 12 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}