Solve for n
n=\frac{\log_{3}\left(4802\right)-7}{2}\approx 0.357952375
Share
Copied to clipboard
\frac{9^{n}\times 243\times 27^{3}}{2\times 21^{4}}=27
Calculate 3 to the power of 5 and get 243.
\frac{9^{n}\times 243\times 19683}{2\times 21^{4}}=27
Calculate 27 to the power of 3 and get 19683.
\frac{9^{n}\times 4782969}{2\times 21^{4}}=27
Multiply 243 and 19683 to get 4782969.
\frac{9^{n}\times 4782969}{2\times 194481}=27
Calculate 21 to the power of 4 and get 194481.
\frac{9^{n}\times 4782969}{388962}=27
Multiply 2 and 194481 to get 388962.
9^{n}\times \frac{59049}{4802}=27
Divide 9^{n}\times 4782969 by 388962 to get 9^{n}\times \frac{59049}{4802}.
9^{n}=27\times \frac{4802}{59049}
Multiply both sides by \frac{4802}{59049}, the reciprocal of \frac{59049}{4802}.
9^{n}=\frac{4802}{2187}
Multiply 27 and \frac{4802}{59049} to get \frac{4802}{2187}.
\log(9^{n})=\log(\frac{4802}{2187})
Take the logarithm of both sides of the equation.
n\log(9)=\log(\frac{4802}{2187})
The logarithm of a number raised to a power is the power times the logarithm of the number.
n=\frac{\log(\frac{4802}{2187})}{\log(9)}
Divide both sides by \log(9).
n=\log_{9}\left(\frac{4802}{2187}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}