Solve for n
n=3
Share
Copied to clipboard
\frac{3^{4}\times 27^{3}\times 9^{n}}{81^{4}}=27
Cancel out 3 in both numerator and denominator.
\frac{81\times 27^{3}\times 9^{n}}{81^{4}}=27
Calculate 3 to the power of 4 and get 81.
\frac{81\times 19683\times 9^{n}}{81^{4}}=27
Calculate 27 to the power of 3 and get 19683.
\frac{1594323\times 9^{n}}{81^{4}}=27
Multiply 81 and 19683 to get 1594323.
\frac{1594323\times 9^{n}}{43046721}=27
Calculate 81 to the power of 4 and get 43046721.
\frac{1}{27}\times 9^{n}=27
Divide 1594323\times 9^{n} by 43046721 to get \frac{1}{27}\times 9^{n}.
9^{n}=27\times 27
Multiply both sides by 27, the reciprocal of \frac{1}{27}.
9^{n}=729
Multiply 27 and 27 to get 729.
\log(9^{n})=\log(729)
Take the logarithm of both sides of the equation.
n\log(9)=\log(729)
The logarithm of a number raised to a power is the power times the logarithm of the number.
n=\frac{\log(729)}{\log(9)}
Divide both sides by \log(9).
n=\log_{9}\left(729\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}