Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\frac{9^{n}\times 3^{2}\times 3^{n}-27^{n}}{3^{15}\times 2^{3}}=\frac{1}{27}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{3^{15}\times 2^{3}}=\frac{1}{27}
Calculate 3 to the power of 2 and get 9.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{14348907\times 2^{3}}=\frac{1}{27}
Calculate 3 to the power of 15 and get 14348907.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{14348907\times 8}=\frac{1}{27}
Calculate 2 to the power of 3 and get 8.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256}=\frac{1}{27}
Multiply 14348907 and 8 to get 114791256.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256}-\frac{1}{27}=0
Subtract \frac{1}{27} from both sides.
\frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256}-\frac{4251528}{114791256}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 114791256 and 27 is 114791256. Multiply \frac{1}{27} times \frac{4251528}{4251528}.
\frac{9^{n}\times 9\times 3^{n}-27^{n}-4251528}{114791256}=0
Since \frac{9^{n}\times 9\times 3^{n}-27^{n}}{114791256} and \frac{4251528}{114791256} have the same denominator, subtract them by subtracting their numerators.
\frac{9\times 27^{n}-27^{n}-4251528}{114791256}=0
Do the multiplications in 9^{n}\times 9\times 3^{n}-27^{n}-4251528.
\frac{8\times 27^{n}-4251528}{114791256}=0
Combine like terms in 9\times 27^{n}-27^{n}-4251528.
\frac{1}{14348907}\times 27^{n}-\frac{1}{27}=0
Divide each term of 8\times 27^{n}-4251528 by 114791256 to get \frac{1}{14348907}\times 27^{n}-\frac{1}{27}.
\frac{1}{14348907}\times 27^{n}=\frac{1}{27}
Add \frac{1}{27} to both sides of the equation.
27^{n}=531441
Multiply both sides by 14348907.
\log(27^{n})=\log(531441)
Take the logarithm of both sides of the equation.
n\log(27)=\log(531441)
The logarithm of a number raised to a power is the power times the logarithm of the number.
n=\frac{\log(531441)}{\log(27)}
Divide both sides by \log(27).
n=\log_{27}\left(531441\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).