Evaluate
\frac{75}{73}-\frac{54}{73}i\approx 1.02739726-0.739726027i
Real Part
\frac{75}{73} = 1\frac{2}{73} = 1.0273972602739727
Share
Copied to clipboard
\frac{\left(9+6i\right)\left(3-8i\right)}{\left(3+8i\right)\left(3-8i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-8i.
\frac{\left(9+6i\right)\left(3-8i\right)}{3^{2}-8^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9+6i\right)\left(3-8i\right)}{73}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 3+9\times \left(-8i\right)+6i\times 3+6\left(-8\right)i^{2}}{73}
Multiply complex numbers 9+6i and 3-8i like you multiply binomials.
\frac{9\times 3+9\times \left(-8i\right)+6i\times 3+6\left(-8\right)\left(-1\right)}{73}
By definition, i^{2} is -1.
\frac{27-72i+18i+48}{73}
Do the multiplications in 9\times 3+9\times \left(-8i\right)+6i\times 3+6\left(-8\right)\left(-1\right).
\frac{27+48+\left(-72+18\right)i}{73}
Combine the real and imaginary parts in 27-72i+18i+48.
\frac{75-54i}{73}
Do the additions in 27+48+\left(-72+18\right)i.
\frac{75}{73}-\frac{54}{73}i
Divide 75-54i by 73 to get \frac{75}{73}-\frac{54}{73}i.
Re(\frac{\left(9+6i\right)\left(3-8i\right)}{\left(3+8i\right)\left(3-8i\right)})
Multiply both numerator and denominator of \frac{9+6i}{3+8i} by the complex conjugate of the denominator, 3-8i.
Re(\frac{\left(9+6i\right)\left(3-8i\right)}{3^{2}-8^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(9+6i\right)\left(3-8i\right)}{73})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 3+9\times \left(-8i\right)+6i\times 3+6\left(-8\right)i^{2}}{73})
Multiply complex numbers 9+6i and 3-8i like you multiply binomials.
Re(\frac{9\times 3+9\times \left(-8i\right)+6i\times 3+6\left(-8\right)\left(-1\right)}{73})
By definition, i^{2} is -1.
Re(\frac{27-72i+18i+48}{73})
Do the multiplications in 9\times 3+9\times \left(-8i\right)+6i\times 3+6\left(-8\right)\left(-1\right).
Re(\frac{27+48+\left(-72+18\right)i}{73})
Combine the real and imaginary parts in 27-72i+18i+48.
Re(\frac{75-54i}{73})
Do the additions in 27+48+\left(-72+18\right)i.
Re(\frac{75}{73}-\frac{54}{73}i)
Divide 75-54i by 73 to get \frac{75}{73}-\frac{54}{73}i.
\frac{75}{73}
The real part of \frac{75}{73}-\frac{54}{73}i is \frac{75}{73}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}