Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(9+28i\right)\left(92-8i\right)}{\left(92+8i\right)\left(92-8i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 92-8i.
\frac{\left(9+28i\right)\left(92-8i\right)}{92^{2}-8^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9+28i\right)\left(92-8i\right)}{8528}
By definition, i^{2} is -1. Calculate the denominator.
\frac{9\times 92+9\times \left(-8i\right)+28i\times 92+28\left(-8\right)i^{2}}{8528}
Multiply complex numbers 9+28i and 92-8i like you multiply binomials.
\frac{9\times 92+9\times \left(-8i\right)+28i\times 92+28\left(-8\right)\left(-1\right)}{8528}
By definition, i^{2} is -1.
\frac{828-72i+2576i+224}{8528}
Do the multiplications in 9\times 92+9\times \left(-8i\right)+28i\times 92+28\left(-8\right)\left(-1\right).
\frac{828+224+\left(-72+2576\right)i}{8528}
Combine the real and imaginary parts in 828-72i+2576i+224.
\frac{1052+2504i}{8528}
Do the additions in 828+224+\left(-72+2576\right)i.
\frac{263}{2132}+\frac{313}{1066}i
Divide 1052+2504i by 8528 to get \frac{263}{2132}+\frac{313}{1066}i.
Re(\frac{\left(9+28i\right)\left(92-8i\right)}{\left(92+8i\right)\left(92-8i\right)})
Multiply both numerator and denominator of \frac{9+28i}{92+8i} by the complex conjugate of the denominator, 92-8i.
Re(\frac{\left(9+28i\right)\left(92-8i\right)}{92^{2}-8^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(9+28i\right)\left(92-8i\right)}{8528})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{9\times 92+9\times \left(-8i\right)+28i\times 92+28\left(-8\right)i^{2}}{8528})
Multiply complex numbers 9+28i and 92-8i like you multiply binomials.
Re(\frac{9\times 92+9\times \left(-8i\right)+28i\times 92+28\left(-8\right)\left(-1\right)}{8528})
By definition, i^{2} is -1.
Re(\frac{828-72i+2576i+224}{8528})
Do the multiplications in 9\times 92+9\times \left(-8i\right)+28i\times 92+28\left(-8\right)\left(-1\right).
Re(\frac{828+224+\left(-72+2576\right)i}{8528})
Combine the real and imaginary parts in 828-72i+2576i+224.
Re(\frac{1052+2504i}{8528})
Do the additions in 828+224+\left(-72+2576\right)i.
Re(\frac{263}{2132}+\frac{313}{1066}i)
Divide 1052+2504i by 8528 to get \frac{263}{2132}+\frac{313}{1066}i.
\frac{263}{2132}
The real part of \frac{263}{2132}+\frac{313}{1066}i is \frac{263}{2132}.