Evaluate
\frac{292}{15}\approx 19.466666667
Factor
\frac{2 ^ {2} \cdot 73}{3 \cdot 5} = 19\frac{7}{15} = 19.466666666666665
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)876}\\\end{array}
Use the 1^{st} digit 8 from dividend 876
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)876}\\\end{array}
Since 8 is less than 45, use the next digit 7 from dividend 876 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)876}\\\end{array}
Use the 2^{nd} digit 7 from dividend 876
\begin{array}{l}\phantom{45)}01\phantom{4}\\45\overline{)876}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}42\\\end{array}
Find closest multiple of 45 to 87. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 87 to get reminder 42. Add 1 to quotient.
\begin{array}{l}\phantom{45)}01\phantom{5}\\45\overline{)876}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}426\\\end{array}
Use the 3^{rd} digit 6 from dividend 876
\begin{array}{l}\phantom{45)}019\phantom{6}\\45\overline{)876}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}426\\\phantom{45)}\underline{\phantom{}405\phantom{}}\\\phantom{45)9}21\\\end{array}
Find closest multiple of 45 to 426. We see that 9 \times 45 = 405 is the nearest. Now subtract 405 from 426 to get reminder 21. Add 9 to quotient.
\text{Quotient: }19 \text{Reminder: }21
Since 21 is less than 45, stop the division. The reminder is 21. The topmost line 019 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 19.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}