Evaluate
\frac{175}{2}=87.5
Factor
\frac{5 ^ {2} \cdot 7}{2} = 87\frac{1}{2} = 87.5
Share
Copied to clipboard
\begin{array}{l}\phantom{10)}\phantom{1}\\10\overline{)875}\\\end{array}
Use the 1^{st} digit 8 from dividend 875
\begin{array}{l}\phantom{10)}0\phantom{2}\\10\overline{)875}\\\end{array}
Since 8 is less than 10, use the next digit 7 from dividend 875 and add 0 to the quotient
\begin{array}{l}\phantom{10)}0\phantom{3}\\10\overline{)875}\\\end{array}
Use the 2^{nd} digit 7 from dividend 875
\begin{array}{l}\phantom{10)}08\phantom{4}\\10\overline{)875}\\\phantom{10)}\underline{\phantom{}80\phantom{9}}\\\phantom{10)9}7\\\end{array}
Find closest multiple of 10 to 87. We see that 8 \times 10 = 80 is the nearest. Now subtract 80 from 87 to get reminder 7. Add 8 to quotient.
\begin{array}{l}\phantom{10)}08\phantom{5}\\10\overline{)875}\\\phantom{10)}\underline{\phantom{}80\phantom{9}}\\\phantom{10)9}75\\\end{array}
Use the 3^{rd} digit 5 from dividend 875
\begin{array}{l}\phantom{10)}087\phantom{6}\\10\overline{)875}\\\phantom{10)}\underline{\phantom{}80\phantom{9}}\\\phantom{10)9}75\\\phantom{10)}\underline{\phantom{9}70\phantom{}}\\\phantom{10)99}5\\\end{array}
Find closest multiple of 10 to 75. We see that 7 \times 10 = 70 is the nearest. Now subtract 70 from 75 to get reminder 5. Add 7 to quotient.
\text{Quotient: }87 \text{Reminder: }5
Since 5 is less than 10, stop the division. The reminder is 5. The topmost line 087 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 87.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}