Evaluate
\frac{844}{117}\approx 7.213675214
Factor
\frac{2 ^ {2} \cdot 211}{3 ^ {2} \cdot 13} = 7\frac{25}{117} = 7.213675213675214
Share
Copied to clipboard
\begin{array}{l}\phantom{117)}\phantom{1}\\117\overline{)844}\\\end{array}
Use the 1^{st} digit 8 from dividend 844
\begin{array}{l}\phantom{117)}0\phantom{2}\\117\overline{)844}\\\end{array}
Since 8 is less than 117, use the next digit 4 from dividend 844 and add 0 to the quotient
\begin{array}{l}\phantom{117)}0\phantom{3}\\117\overline{)844}\\\end{array}
Use the 2^{nd} digit 4 from dividend 844
\begin{array}{l}\phantom{117)}00\phantom{4}\\117\overline{)844}\\\end{array}
Since 84 is less than 117, use the next digit 4 from dividend 844 and add 0 to the quotient
\begin{array}{l}\phantom{117)}00\phantom{5}\\117\overline{)844}\\\end{array}
Use the 3^{rd} digit 4 from dividend 844
\begin{array}{l}\phantom{117)}007\phantom{6}\\117\overline{)844}\\\phantom{117)}\underline{\phantom{}819\phantom{}}\\\phantom{117)9}25\\\end{array}
Find closest multiple of 117 to 844. We see that 7 \times 117 = 819 is the nearest. Now subtract 819 from 844 to get reminder 25. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }25
Since 25 is less than 117, stop the division. The reminder is 25. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}