Evaluate
\frac{83}{45}\approx 1.844444444
Factor
\frac{83}{3 ^ {2} \cdot 5} = 1\frac{38}{45} = 1.8444444444444446
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)83}\\\end{array}
Use the 1^{st} digit 8 from dividend 83
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)83}\\\end{array}
Since 8 is less than 45, use the next digit 3 from dividend 83 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)83}\\\end{array}
Use the 2^{nd} digit 3 from dividend 83
\begin{array}{l}\phantom{45)}01\phantom{4}\\45\overline{)83}\\\phantom{45)}\underline{\phantom{}45\phantom{}}\\\phantom{45)}38\\\end{array}
Find closest multiple of 45 to 83. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 83 to get reminder 38. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }38
Since 38 is less than 45, stop the division. The reminder is 38. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}