Evaluate
\frac{165}{4}=41.25
Factor
\frac{3 \cdot 5 \cdot 11}{2 ^ {2}} = 41\frac{1}{4} = 41.25
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)825}\\\end{array}
Use the 1^{st} digit 8 from dividend 825
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)825}\\\end{array}
Since 8 is less than 20, use the next digit 2 from dividend 825 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)825}\\\end{array}
Use the 2^{nd} digit 2 from dividend 825
\begin{array}{l}\phantom{20)}04\phantom{4}\\20\overline{)825}\\\phantom{20)}\underline{\phantom{}80\phantom{9}}\\\phantom{20)9}2\\\end{array}
Find closest multiple of 20 to 82. We see that 4 \times 20 = 80 is the nearest. Now subtract 80 from 82 to get reminder 2. Add 4 to quotient.
\begin{array}{l}\phantom{20)}04\phantom{5}\\20\overline{)825}\\\phantom{20)}\underline{\phantom{}80\phantom{9}}\\\phantom{20)9}25\\\end{array}
Use the 3^{rd} digit 5 from dividend 825
\begin{array}{l}\phantom{20)}041\phantom{6}\\20\overline{)825}\\\phantom{20)}\underline{\phantom{}80\phantom{9}}\\\phantom{20)9}25\\\phantom{20)}\underline{\phantom{9}20\phantom{}}\\\phantom{20)99}5\\\end{array}
Find closest multiple of 20 to 25. We see that 1 \times 20 = 20 is the nearest. Now subtract 20 from 25 to get reminder 5. Add 1 to quotient.
\text{Quotient: }41 \text{Reminder: }5
Since 5 is less than 20, stop the division. The reminder is 5. The topmost line 041 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}