Evaluate
\frac{82}{21}\approx 3.904761905
Factor
\frac{2 \cdot 41}{3 \cdot 7} = 3\frac{19}{21} = 3.9047619047619047
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)82}\\\end{array}
Use the 1^{st} digit 8 from dividend 82
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)82}\\\end{array}
Since 8 is less than 21, use the next digit 2 from dividend 82 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)82}\\\end{array}
Use the 2^{nd} digit 2 from dividend 82
\begin{array}{l}\phantom{21)}03\phantom{4}\\21\overline{)82}\\\phantom{21)}\underline{\phantom{}63\phantom{}}\\\phantom{21)}19\\\end{array}
Find closest multiple of 21 to 82. We see that 3 \times 21 = 63 is the nearest. Now subtract 63 from 82 to get reminder 19. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }19
Since 19 is less than 21, stop the division. The reminder is 19. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}