Evaluate
\frac{811}{24}\approx 33.791666667
Factor
\frac{811}{2 ^ {3} \cdot 3} = 33\frac{19}{24} = 33.791666666666664
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)811}\\\end{array}
Use the 1^{st} digit 8 from dividend 811
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)811}\\\end{array}
Since 8 is less than 24, use the next digit 1 from dividend 811 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)811}\\\end{array}
Use the 2^{nd} digit 1 from dividend 811
\begin{array}{l}\phantom{24)}03\phantom{4}\\24\overline{)811}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}9\\\end{array}
Find closest multiple of 24 to 81. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 81 to get reminder 9. Add 3 to quotient.
\begin{array}{l}\phantom{24)}03\phantom{5}\\24\overline{)811}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}91\\\end{array}
Use the 3^{rd} digit 1 from dividend 811
\begin{array}{l}\phantom{24)}033\phantom{6}\\24\overline{)811}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}91\\\phantom{24)}\underline{\phantom{9}72\phantom{}}\\\phantom{24)9}19\\\end{array}
Find closest multiple of 24 to 91. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 91 to get reminder 19. Add 3 to quotient.
\text{Quotient: }33 \text{Reminder: }19
Since 19 is less than 24, stop the division. The reminder is 19. The topmost line 033 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 33.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}