Evaluate
\frac{81}{64}=1.265625
Factor
\frac{3 ^ {4}}{2 ^ {6}} = 1\frac{17}{64} = 1.265625
Share
Copied to clipboard
\begin{array}{l}\phantom{64)}\phantom{1}\\64\overline{)81}\\\end{array}
Use the 1^{st} digit 8 from dividend 81
\begin{array}{l}\phantom{64)}0\phantom{2}\\64\overline{)81}\\\end{array}
Since 8 is less than 64, use the next digit 1 from dividend 81 and add 0 to the quotient
\begin{array}{l}\phantom{64)}0\phantom{3}\\64\overline{)81}\\\end{array}
Use the 2^{nd} digit 1 from dividend 81
\begin{array}{l}\phantom{64)}01\phantom{4}\\64\overline{)81}\\\phantom{64)}\underline{\phantom{}64\phantom{}}\\\phantom{64)}17\\\end{array}
Find closest multiple of 64 to 81. We see that 1 \times 64 = 64 is the nearest. Now subtract 64 from 81 to get reminder 17. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }17
Since 17 is less than 64, stop the division. The reminder is 17. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}