Solve for y
y = \frac{\sqrt{112465} + 427}{6} \approx 127.059669608
y = \frac{427 - \sqrt{112465}}{6} \approx 15.273663726
Graph
Share
Copied to clipboard
-y\times 81+y\left(y-41\right)\times 1.5=\left(y-41\right)\times 71
Variable y cannot be equal to any of the values 0,41 since division by zero is not defined. Multiply both sides of the equation by y\left(y-41\right), the least common multiple of 41-y,y.
-81y+y\left(y-41\right)\times 1.5=\left(y-41\right)\times 71
Multiply -1 and 81 to get -81.
-81y+\left(y^{2}-41y\right)\times 1.5=\left(y-41\right)\times 71
Use the distributive property to multiply y by y-41.
-81y+1.5y^{2}-61.5y=\left(y-41\right)\times 71
Use the distributive property to multiply y^{2}-41y by 1.5.
-142.5y+1.5y^{2}=\left(y-41\right)\times 71
Combine -81y and -61.5y to get -142.5y.
-142.5y+1.5y^{2}=71y-2911
Use the distributive property to multiply y-41 by 71.
-142.5y+1.5y^{2}-71y=-2911
Subtract 71y from both sides.
-213.5y+1.5y^{2}=-2911
Combine -142.5y and -71y to get -213.5y.
-213.5y+1.5y^{2}+2911=0
Add 2911 to both sides.
1.5y^{2}-213.5y+2911=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-213.5\right)±\sqrt{\left(-213.5\right)^{2}-4\times 1.5\times 2911}}{2\times 1.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.5 for a, -213.5 for b, and 2911 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-213.5\right)±\sqrt{45582.25-4\times 1.5\times 2911}}{2\times 1.5}
Square -213.5 by squaring both the numerator and the denominator of the fraction.
y=\frac{-\left(-213.5\right)±\sqrt{45582.25-6\times 2911}}{2\times 1.5}
Multiply -4 times 1.5.
y=\frac{-\left(-213.5\right)±\sqrt{45582.25-17466}}{2\times 1.5}
Multiply -6 times 2911.
y=\frac{-\left(-213.5\right)±\sqrt{28116.25}}{2\times 1.5}
Add 45582.25 to -17466.
y=\frac{-\left(-213.5\right)±\frac{\sqrt{112465}}{2}}{2\times 1.5}
Take the square root of 28116.25.
y=\frac{213.5±\frac{\sqrt{112465}}{2}}{2\times 1.5}
The opposite of -213.5 is 213.5.
y=\frac{213.5±\frac{\sqrt{112465}}{2}}{3}
Multiply 2 times 1.5.
y=\frac{\sqrt{112465}+427}{2\times 3}
Now solve the equation y=\frac{213.5±\frac{\sqrt{112465}}{2}}{3} when ± is plus. Add 213.5 to \frac{\sqrt{112465}}{2}.
y=\frac{\sqrt{112465}+427}{6}
Divide \frac{427+\sqrt{112465}}{2} by 3.
y=\frac{427-\sqrt{112465}}{2\times 3}
Now solve the equation y=\frac{213.5±\frac{\sqrt{112465}}{2}}{3} when ± is minus. Subtract \frac{\sqrt{112465}}{2} from 213.5.
y=\frac{427-\sqrt{112465}}{6}
Divide \frac{427-\sqrt{112465}}{2} by 3.
y=\frac{\sqrt{112465}+427}{6} y=\frac{427-\sqrt{112465}}{6}
The equation is now solved.
-y\times 81+y\left(y-41\right)\times 1.5=\left(y-41\right)\times 71
Variable y cannot be equal to any of the values 0,41 since division by zero is not defined. Multiply both sides of the equation by y\left(y-41\right), the least common multiple of 41-y,y.
-81y+y\left(y-41\right)\times 1.5=\left(y-41\right)\times 71
Multiply -1 and 81 to get -81.
-81y+\left(y^{2}-41y\right)\times 1.5=\left(y-41\right)\times 71
Use the distributive property to multiply y by y-41.
-81y+1.5y^{2}-61.5y=\left(y-41\right)\times 71
Use the distributive property to multiply y^{2}-41y by 1.5.
-142.5y+1.5y^{2}=\left(y-41\right)\times 71
Combine -81y and -61.5y to get -142.5y.
-142.5y+1.5y^{2}=71y-2911
Use the distributive property to multiply y-41 by 71.
-142.5y+1.5y^{2}-71y=-2911
Subtract 71y from both sides.
-213.5y+1.5y^{2}=-2911
Combine -142.5y and -71y to get -213.5y.
1.5y^{2}-213.5y=-2911
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1.5y^{2}-213.5y}{1.5}=-\frac{2911}{1.5}
Divide both sides of the equation by 1.5, which is the same as multiplying both sides by the reciprocal of the fraction.
y^{2}+\left(-\frac{213.5}{1.5}\right)y=-\frac{2911}{1.5}
Dividing by 1.5 undoes the multiplication by 1.5.
y^{2}-\frac{427}{3}y=-\frac{2911}{1.5}
Divide -213.5 by 1.5 by multiplying -213.5 by the reciprocal of 1.5.
y^{2}-\frac{427}{3}y=-\frac{5822}{3}
Divide -2911 by 1.5 by multiplying -2911 by the reciprocal of 1.5.
y^{2}-\frac{427}{3}y+\left(-\frac{427}{6}\right)^{2}=-\frac{5822}{3}+\left(-\frac{427}{6}\right)^{2}
Divide -\frac{427}{3}, the coefficient of the x term, by 2 to get -\frac{427}{6}. Then add the square of -\frac{427}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{427}{3}y+\frac{182329}{36}=-\frac{5822}{3}+\frac{182329}{36}
Square -\frac{427}{6} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{427}{3}y+\frac{182329}{36}=\frac{112465}{36}
Add -\frac{5822}{3} to \frac{182329}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{427}{6}\right)^{2}=\frac{112465}{36}
Factor y^{2}-\frac{427}{3}y+\frac{182329}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{427}{6}\right)^{2}}=\sqrt{\frac{112465}{36}}
Take the square root of both sides of the equation.
y-\frac{427}{6}=\frac{\sqrt{112465}}{6} y-\frac{427}{6}=-\frac{\sqrt{112465}}{6}
Simplify.
y=\frac{\sqrt{112465}+427}{6} y=\frac{427-\sqrt{112465}}{6}
Add \frac{427}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}