Evaluate
\frac{80}{23}\approx 3.47826087
Factor
\frac{2 ^ {4} \cdot 5}{23} = 3\frac{11}{23} = 3.4782608695652173
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)80}\\\end{array}
Use the 1^{st} digit 8 from dividend 80
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)80}\\\end{array}
Since 8 is less than 23, use the next digit 0 from dividend 80 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)80}\\\end{array}
Use the 2^{nd} digit 0 from dividend 80
\begin{array}{l}\phantom{23)}03\phantom{4}\\23\overline{)80}\\\phantom{23)}\underline{\phantom{}69\phantom{}}\\\phantom{23)}11\\\end{array}
Find closest multiple of 23 to 80. We see that 3 \times 23 = 69 is the nearest. Now subtract 69 from 80 to get reminder 11. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }11
Since 11 is less than 23, stop the division. The reminder is 11. The topmost line 03 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}