Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. g
Tick mark Image

Similar Problems from Web Search

Share

\left(8g^{1}\right)^{1}\times \frac{1}{3g^{4}}
Use the rules of exponents to simplify the expression.
8^{1}\left(g^{1}\right)^{1}\times \frac{1}{3}\times \frac{1}{g^{4}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
8^{1}\times \frac{1}{3}\left(g^{1}\right)^{1}\times \frac{1}{g^{4}}
Use the Commutative Property of Multiplication.
8^{1}\times \frac{1}{3}g^{1}g^{4\left(-1\right)}
To raise a power to another power, multiply the exponents.
8^{1}\times \frac{1}{3}g^{1}g^{-4}
Multiply 4 times -1.
8^{1}\times \frac{1}{3}g^{1-4}
To multiply powers of the same base, add their exponents.
8^{1}\times \frac{1}{3}g^{-3}
Add the exponents 1 and -4.
8\times \frac{1}{3}g^{-3}
Raise 8 to the power 1.
\frac{8}{3}g^{-3}
Multiply 8 times \frac{1}{3}.
\frac{8^{1}g^{1}}{3^{1}g^{4}}
Use the rules of exponents to simplify the expression.
\frac{8^{1}g^{1-4}}{3^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{8^{1}g^{-3}}{3^{1}}
Subtract 4 from 1.
\frac{8}{3}g^{-3}
Divide 8 by 3.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{8}{3}g^{1-4})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}g}(\frac{8}{3}g^{-3})
Do the arithmetic.
-3\times \frac{8}{3}g^{-3-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-8g^{-4}
Do the arithmetic.