Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8-i\right)\left(8-4i\right)}{\left(8+4i\right)\left(8-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8-4i.
\frac{\left(8-i\right)\left(8-4i\right)}{8^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8-i\right)\left(8-4i\right)}{80}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4i^{2}\right)}{80}
Multiply complex numbers 8-i and 8-4i like you multiply binomials.
\frac{8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4\left(-1\right)\right)}{80}
By definition, i^{2} is -1.
\frac{64-32i-8i-4}{80}
Do the multiplications in 8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4\left(-1\right)\right).
\frac{64-4+\left(-32-8\right)i}{80}
Combine the real and imaginary parts in 64-32i-8i-4.
\frac{60-40i}{80}
Do the additions in 64-4+\left(-32-8\right)i.
\frac{3}{4}-\frac{1}{2}i
Divide 60-40i by 80 to get \frac{3}{4}-\frac{1}{2}i.
Re(\frac{\left(8-i\right)\left(8-4i\right)}{\left(8+4i\right)\left(8-4i\right)})
Multiply both numerator and denominator of \frac{8-i}{8+4i} by the complex conjugate of the denominator, 8-4i.
Re(\frac{\left(8-i\right)\left(8-4i\right)}{8^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8-i\right)\left(8-4i\right)}{80})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4i^{2}\right)}{80})
Multiply complex numbers 8-i and 8-4i like you multiply binomials.
Re(\frac{8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4\left(-1\right)\right)}{80})
By definition, i^{2} is -1.
Re(\frac{64-32i-8i-4}{80})
Do the multiplications in 8\times 8+8\times \left(-4i\right)-i\times 8-\left(-4\left(-1\right)\right).
Re(\frac{64-4+\left(-32-8\right)i}{80})
Combine the real and imaginary parts in 64-32i-8i-4.
Re(\frac{60-40i}{80})
Do the additions in 64-4+\left(-32-8\right)i.
Re(\frac{3}{4}-\frac{1}{2}i)
Divide 60-40i by 80 to get \frac{3}{4}-\frac{1}{2}i.
\frac{3}{4}
The real part of \frac{3}{4}-\frac{1}{2}i is \frac{3}{4}.