Solve for h
h=-\frac{8}{2k-9}
k\neq \frac{9}{2}\text{ and }k\neq 4
Solve for k
k=\frac{9}{2}-\frac{4}{h}
h\neq 8\text{ and }h\neq 0
Share
Copied to clipboard
8-h=2h\left(-k+4\right)
Multiply both sides of the equation by -k+4.
8-h=-2hk+8h
Use the distributive property to multiply 2h by -k+4.
8-h+2hk=8h
Add 2hk to both sides.
8-h+2hk-8h=0
Subtract 8h from both sides.
8-9h+2hk=0
Combine -h and -8h to get -9h.
-9h+2hk=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\left(-9+2k\right)h=-8
Combine all terms containing h.
\left(2k-9\right)h=-8
The equation is in standard form.
\frac{\left(2k-9\right)h}{2k-9}=-\frac{8}{2k-9}
Divide both sides by 2k-9.
h=-\frac{8}{2k-9}
Dividing by 2k-9 undoes the multiplication by 2k-9.
8-h=2h\left(-k+4\right)
Variable k cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by -k+4.
8-h=-2hk+8h
Use the distributive property to multiply 2h by -k+4.
-2hk+8h=8-h
Swap sides so that all variable terms are on the left hand side.
-2hk=8-h-8h
Subtract 8h from both sides.
-2hk=8-9h
Combine -h and -8h to get -9h.
\left(-2h\right)k=8-9h
The equation is in standard form.
\frac{\left(-2h\right)k}{-2h}=\frac{8-9h}{-2h}
Divide both sides by -2h.
k=\frac{8-9h}{-2h}
Dividing by -2h undoes the multiplication by -2h.
k=\frac{9}{2}-\frac{4}{h}
Divide 8-9h by -2h.
k=\frac{9}{2}-\frac{4}{h}\text{, }k\neq 4
Variable k cannot be equal to 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}