Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8-4i\right)\left(3-8i\right)}{\left(3+8i\right)\left(3-8i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3-8i.
\frac{\left(8-4i\right)\left(3-8i\right)}{3^{2}-8^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8-4i\right)\left(3-8i\right)}{73}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 3+8\times \left(-8i\right)-4i\times 3-4\left(-8\right)i^{2}}{73}
Multiply complex numbers 8-4i and 3-8i like you multiply binomials.
\frac{8\times 3+8\times \left(-8i\right)-4i\times 3-4\left(-8\right)\left(-1\right)}{73}
By definition, i^{2} is -1.
\frac{24-64i-12i-32}{73}
Do the multiplications in 8\times 3+8\times \left(-8i\right)-4i\times 3-4\left(-8\right)\left(-1\right).
\frac{24-32+\left(-64-12\right)i}{73}
Combine the real and imaginary parts in 24-64i-12i-32.
\frac{-8-76i}{73}
Do the additions in 24-32+\left(-64-12\right)i.
-\frac{8}{73}-\frac{76}{73}i
Divide -8-76i by 73 to get -\frac{8}{73}-\frac{76}{73}i.
Re(\frac{\left(8-4i\right)\left(3-8i\right)}{\left(3+8i\right)\left(3-8i\right)})
Multiply both numerator and denominator of \frac{8-4i}{3+8i} by the complex conjugate of the denominator, 3-8i.
Re(\frac{\left(8-4i\right)\left(3-8i\right)}{3^{2}-8^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8-4i\right)\left(3-8i\right)}{73})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 3+8\times \left(-8i\right)-4i\times 3-4\left(-8\right)i^{2}}{73})
Multiply complex numbers 8-4i and 3-8i like you multiply binomials.
Re(\frac{8\times 3+8\times \left(-8i\right)-4i\times 3-4\left(-8\right)\left(-1\right)}{73})
By definition, i^{2} is -1.
Re(\frac{24-64i-12i-32}{73})
Do the multiplications in 8\times 3+8\times \left(-8i\right)-4i\times 3-4\left(-8\right)\left(-1\right).
Re(\frac{24-32+\left(-64-12\right)i}{73})
Combine the real and imaginary parts in 24-64i-12i-32.
Re(\frac{-8-76i}{73})
Do the additions in 24-32+\left(-64-12\right)i.
Re(-\frac{8}{73}-\frac{76}{73}i)
Divide -8-76i by 73 to get -\frac{8}{73}-\frac{76}{73}i.
-\frac{8}{73}
The real part of -\frac{8}{73}-\frac{76}{73}i is -\frac{8}{73}.