Solve for x
x<\frac{85}{32}
Graph
Share
Copied to clipboard
8\left(x-2\right)<\frac{3}{4}\times 7
Multiply both sides by 7. Since 7 is positive, the inequality direction remains the same.
8x-16<\frac{3}{4}\times 7
Use the distributive property to multiply 8 by x-2.
8x-16<\frac{3\times 7}{4}
Express \frac{3}{4}\times 7 as a single fraction.
8x-16<\frac{21}{4}
Multiply 3 and 7 to get 21.
8x<\frac{21}{4}+16
Add 16 to both sides.
8x<\frac{21}{4}+\frac{64}{4}
Convert 16 to fraction \frac{64}{4}.
8x<\frac{21+64}{4}
Since \frac{21}{4} and \frac{64}{4} have the same denominator, add them by adding their numerators.
8x<\frac{85}{4}
Add 21 and 64 to get 85.
x<\frac{\frac{85}{4}}{8}
Divide both sides by 8. Since 8 is positive, the inequality direction remains the same.
x<\frac{85}{4\times 8}
Express \frac{\frac{85}{4}}{8} as a single fraction.
x<\frac{85}{32}
Multiply 4 and 8 to get 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}