Evaluate
-\frac{144}{7}\approx -20.571428571
Factor
-\frac{144}{7} = -20\frac{4}{7} = -20.571428571428573
Share
Copied to clipboard
\frac{8\left(-6\right)}{\frac{7\left(5-2\right)}{9}}
Subtract 7 from 1 to get -6.
\frac{-48}{\frac{7\left(5-2\right)}{9}}
Multiply 8 and -6 to get -48.
\frac{-48}{\frac{7\times 3}{9}}
Subtract 2 from 5 to get 3.
\frac{-48}{\frac{21}{9}}
Multiply 7 and 3 to get 21.
\frac{-48}{\frac{7}{3}}
Reduce the fraction \frac{21}{9} to lowest terms by extracting and canceling out 3.
-48\times \frac{3}{7}
Divide -48 by \frac{7}{3} by multiplying -48 by the reciprocal of \frac{7}{3}.
\frac{-48\times 3}{7}
Express -48\times \frac{3}{7} as a single fraction.
\frac{-144}{7}
Multiply -48 and 3 to get -144.
-\frac{144}{7}
Fraction \frac{-144}{7} can be rewritten as -\frac{144}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}