Solve for c
c=-\frac{a^{2}}{88}+\frac{1}{198}
|a|\neq \frac{2}{3}
Solve for a
a=\frac{2\sqrt{1-198c}}{3}
a=-\frac{2\sqrt{1-198c}}{3}\text{, }c\leq \frac{1}{198}\text{ and }c\neq 0
Share
Copied to clipboard
8\left(\frac{2}{3}-\frac{3a^{2}}{2}\right)=1056c
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 24c.
8\left(\frac{2\times 2}{6}-\frac{3\times 3a^{2}}{6}\right)=1056c
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{2}{3} times \frac{2}{2}. Multiply \frac{3a^{2}}{2} times \frac{3}{3}.
8\times \frac{2\times 2-3\times 3a^{2}}{6}=1056c
Since \frac{2\times 2}{6} and \frac{3\times 3a^{2}}{6} have the same denominator, subtract them by subtracting their numerators.
8\times \frac{4-9a^{2}}{6}=1056c
Do the multiplications in 2\times 2-3\times 3a^{2}.
\frac{8\left(4-9a^{2}\right)}{6}=1056c
Express 8\times \frac{4-9a^{2}}{6} as a single fraction.
\frac{32-72a^{2}}{6}=1056c
Use the distributive property to multiply 8 by 4-9a^{2}.
\frac{16}{3}-12a^{2}=1056c
Divide each term of 32-72a^{2} by 6 to get \frac{16}{3}-12a^{2}.
1056c=\frac{16}{3}-12a^{2}
Swap sides so that all variable terms are on the left hand side.
\frac{1056c}{1056}=\frac{\frac{16}{3}-12a^{2}}{1056}
Divide both sides by 1056.
c=\frac{\frac{16}{3}-12a^{2}}{1056}
Dividing by 1056 undoes the multiplication by 1056.
c=-\frac{a^{2}}{88}+\frac{1}{198}
Divide -12a^{2}+\frac{16}{3} by 1056.
c=-\frac{a^{2}}{88}+\frac{1}{198}\text{, }c\neq 0
Variable c cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}