Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{8}{x^{3}+1}+\frac{8}{x^{6}x^{-2}+1}
To multiply powers of the same base, add their exponents. Add 9 and -6 to get 3.
\frac{8}{x^{3}+1}+\frac{8}{x^{4}+1}
To multiply powers of the same base, add their exponents. Add 6 and -2 to get 4.
\frac{8}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{8}{x^{4}+1}
Factor x^{3}+1.
\frac{8\left(x^{4}+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)}+\frac{8\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x^{2}-x+1\right) and x^{4}+1 is \left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right). Multiply \frac{8}{\left(x+1\right)\left(x^{2}-x+1\right)} times \frac{x^{4}+1}{x^{4}+1}. Multiply \frac{8}{x^{4}+1} times \frac{\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{8\left(x^{4}+1\right)+8\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)}
Since \frac{8\left(x^{4}+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)} and \frac{8\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)} have the same denominator, add them by adding their numerators.
\frac{8x^{4}+8+8x^{3}-8x^{2}+8x+8x^{2}-8x+8}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)}
Do the multiplications in 8\left(x^{4}+1\right)+8\left(x+1\right)\left(x^{2}-x+1\right).
\frac{8x^{4}+16+8x^{3}}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)}
Combine like terms in 8x^{4}+8+8x^{3}-8x^{2}+8x+8x^{2}-8x+8.
\frac{8x^{4}+16+8x^{3}}{x^{7}+x^{4}+x^{3}+1}
Expand \left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right).