Evaluate
\frac{8\left(x^{4}+x^{3}+2\right)}{\left(x^{3}+1\right)\left(x^{4}+1\right)}
Factor
\frac{8\left(x^{4}+x^{3}+2\right)}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)}
Graph
Share
Copied to clipboard
\frac{8}{x^{3}+1}+\frac{8}{x^{6}x^{-2}+1}
To multiply powers of the same base, add their exponents. Add 9 and -6 to get 3.
\frac{8}{x^{3}+1}+\frac{8}{x^{4}+1}
To multiply powers of the same base, add their exponents. Add 6 and -2 to get 4.
\frac{8}{\left(x+1\right)\left(x^{2}-x+1\right)}+\frac{8}{x^{4}+1}
Factor x^{3}+1.
\frac{8\left(x^{4}+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)}+\frac{8\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(x^{2}-x+1\right) and x^{4}+1 is \left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right). Multiply \frac{8}{\left(x+1\right)\left(x^{2}-x+1\right)} times \frac{x^{4}+1}{x^{4}+1}. Multiply \frac{8}{x^{4}+1} times \frac{\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)}.
\frac{8\left(x^{4}+1\right)+8\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)}
Since \frac{8\left(x^{4}+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)} and \frac{8\left(x+1\right)\left(x^{2}-x+1\right)}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)} have the same denominator, add them by adding their numerators.
\frac{8x^{4}+8+8x^{3}-8x^{2}+8x+8x^{2}-8x+8}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)}
Do the multiplications in 8\left(x^{4}+1\right)+8\left(x+1\right)\left(x^{2}-x+1\right).
\frac{8x^{4}+16+8x^{3}}{\left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right)}
Combine like terms in 8x^{4}+8+8x^{3}-8x^{2}+8x+8x^{2}-8x+8.
\frac{8x^{4}+16+8x^{3}}{x^{7}+x^{4}+x^{3}+1}
Expand \left(x+1\right)\left(x^{2}-x+1\right)\left(x^{4}+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}