Solve for x
x=\frac{5\sqrt{681}}{96}+\frac{75}{32}\approx 3.702915453
x=-\frac{5\sqrt{681}}{96}+\frac{75}{32}\approx 0.984584547
Graph
Share
Copied to clipboard
5x\left(x-5\right)\times 8-5x\left(5-3x\right)=\left(x^{2}-25\right)\times 7
Variable x cannot be equal to any of the values -5,0,5 since division by zero is not defined. Multiply both sides of the equation by 5x\left(x-5\right)\left(x+5\right), the least common multiple of x+5,x^{2}-25,5x.
\left(5x^{2}-25x\right)\times 8-5x\left(5-3x\right)=\left(x^{2}-25\right)\times 7
Use the distributive property to multiply 5x by x-5.
40x^{2}-200x-5x\left(5-3x\right)=\left(x^{2}-25\right)\times 7
Use the distributive property to multiply 5x^{2}-25x by 8.
40x^{2}-200x-\left(25x-15x^{2}\right)=\left(x^{2}-25\right)\times 7
Use the distributive property to multiply 5x by 5-3x.
40x^{2}-200x-25x+15x^{2}=\left(x^{2}-25\right)\times 7
To find the opposite of 25x-15x^{2}, find the opposite of each term.
40x^{2}-225x+15x^{2}=\left(x^{2}-25\right)\times 7
Combine -200x and -25x to get -225x.
55x^{2}-225x=\left(x^{2}-25\right)\times 7
Combine 40x^{2} and 15x^{2} to get 55x^{2}.
55x^{2}-225x=7x^{2}-175
Use the distributive property to multiply x^{2}-25 by 7.
55x^{2}-225x-7x^{2}=-175
Subtract 7x^{2} from both sides.
48x^{2}-225x=-175
Combine 55x^{2} and -7x^{2} to get 48x^{2}.
48x^{2}-225x+175=0
Add 175 to both sides.
x=\frac{-\left(-225\right)±\sqrt{\left(-225\right)^{2}-4\times 48\times 175}}{2\times 48}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 48 for a, -225 for b, and 175 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-225\right)±\sqrt{50625-4\times 48\times 175}}{2\times 48}
Square -225.
x=\frac{-\left(-225\right)±\sqrt{50625-192\times 175}}{2\times 48}
Multiply -4 times 48.
x=\frac{-\left(-225\right)±\sqrt{50625-33600}}{2\times 48}
Multiply -192 times 175.
x=\frac{-\left(-225\right)±\sqrt{17025}}{2\times 48}
Add 50625 to -33600.
x=\frac{-\left(-225\right)±5\sqrt{681}}{2\times 48}
Take the square root of 17025.
x=\frac{225±5\sqrt{681}}{2\times 48}
The opposite of -225 is 225.
x=\frac{225±5\sqrt{681}}{96}
Multiply 2 times 48.
x=\frac{5\sqrt{681}+225}{96}
Now solve the equation x=\frac{225±5\sqrt{681}}{96} when ± is plus. Add 225 to 5\sqrt{681}.
x=\frac{5\sqrt{681}}{96}+\frac{75}{32}
Divide 225+5\sqrt{681} by 96.
x=\frac{225-5\sqrt{681}}{96}
Now solve the equation x=\frac{225±5\sqrt{681}}{96} when ± is minus. Subtract 5\sqrt{681} from 225.
x=-\frac{5\sqrt{681}}{96}+\frac{75}{32}
Divide 225-5\sqrt{681} by 96.
x=\frac{5\sqrt{681}}{96}+\frac{75}{32} x=-\frac{5\sqrt{681}}{96}+\frac{75}{32}
The equation is now solved.
5x\left(x-5\right)\times 8-5x\left(5-3x\right)=\left(x^{2}-25\right)\times 7
Variable x cannot be equal to any of the values -5,0,5 since division by zero is not defined. Multiply both sides of the equation by 5x\left(x-5\right)\left(x+5\right), the least common multiple of x+5,x^{2}-25,5x.
\left(5x^{2}-25x\right)\times 8-5x\left(5-3x\right)=\left(x^{2}-25\right)\times 7
Use the distributive property to multiply 5x by x-5.
40x^{2}-200x-5x\left(5-3x\right)=\left(x^{2}-25\right)\times 7
Use the distributive property to multiply 5x^{2}-25x by 8.
40x^{2}-200x-\left(25x-15x^{2}\right)=\left(x^{2}-25\right)\times 7
Use the distributive property to multiply 5x by 5-3x.
40x^{2}-200x-25x+15x^{2}=\left(x^{2}-25\right)\times 7
To find the opposite of 25x-15x^{2}, find the opposite of each term.
40x^{2}-225x+15x^{2}=\left(x^{2}-25\right)\times 7
Combine -200x and -25x to get -225x.
55x^{2}-225x=\left(x^{2}-25\right)\times 7
Combine 40x^{2} and 15x^{2} to get 55x^{2}.
55x^{2}-225x=7x^{2}-175
Use the distributive property to multiply x^{2}-25 by 7.
55x^{2}-225x-7x^{2}=-175
Subtract 7x^{2} from both sides.
48x^{2}-225x=-175
Combine 55x^{2} and -7x^{2} to get 48x^{2}.
\frac{48x^{2}-225x}{48}=-\frac{175}{48}
Divide both sides by 48.
x^{2}+\left(-\frac{225}{48}\right)x=-\frac{175}{48}
Dividing by 48 undoes the multiplication by 48.
x^{2}-\frac{75}{16}x=-\frac{175}{48}
Reduce the fraction \frac{-225}{48} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{75}{16}x+\left(-\frac{75}{32}\right)^{2}=-\frac{175}{48}+\left(-\frac{75}{32}\right)^{2}
Divide -\frac{75}{16}, the coefficient of the x term, by 2 to get -\frac{75}{32}. Then add the square of -\frac{75}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{75}{16}x+\frac{5625}{1024}=-\frac{175}{48}+\frac{5625}{1024}
Square -\frac{75}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{75}{16}x+\frac{5625}{1024}=\frac{5675}{3072}
Add -\frac{175}{48} to \frac{5625}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{75}{32}\right)^{2}=\frac{5675}{3072}
Factor x^{2}-\frac{75}{16}x+\frac{5625}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{75}{32}\right)^{2}}=\sqrt{\frac{5675}{3072}}
Take the square root of both sides of the equation.
x-\frac{75}{32}=\frac{5\sqrt{681}}{96} x-\frac{75}{32}=-\frac{5\sqrt{681}}{96}
Simplify.
x=\frac{5\sqrt{681}}{96}+\frac{75}{32} x=-\frac{5\sqrt{681}}{96}+\frac{75}{32}
Add \frac{75}{32} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}